Some aspects of program implementation
pseudorandom sequence generators

0. Geiko

Department of Computer Science
Vasyl Stefanyk Precarpathian
National University
Ivano-Frankivsk, Ukraine
ifgo69@gmail.com

S. Dolinovska

Department of Computer Science
Vasyl Stefanyk Precarpathian
National University
Ivano-Frankivsk, Ukraine
sdolinovska@gmail.com

JIesiK1 acleKTH IporpaMHoi peaii3allli reHepaTopiB
TICEBJIOBUIIAIKOBUX ITOCIIIIOBHOCTEHN

O. I'eiiko
kadenpa iHpopMaTUKH
[MpukapniaTchKuii HalliOHABHUN YHIBEPCUTET
imeni Bacunsa Credanuka
IBaHo-®pankiBchk, YKpaina
ifgo69@gmail.com

Abstract — This article considers some aspects of the software
implementation of pseudorandom generators, for example
generator according to the scheme on the Galois shift registers
with linear feedback, with wusing high-level programming
languages, high-level languages with low level of abstraction and
language of Assembler. It is proved the efficiency of the software
generation of pseudorandom sequences of maximum length,
which is based on the algorithms by using the following
commands manipulate bits.

Anomauyia — B craTTi pO3riIHYTO JeAKi aCIEKTH
NporpaMHoi peanizamii reHepaTopiB INCeBJOBHIAAKOBHX
NOCJIiI0BHOCTe, Ha NMPUKJIAAi reHepaTopa 3a cxemoro I'anya Ha
perictrpax 3cyBy 3 JIiHIiHUMM 3BOPOTHUMM 3B'SI3KaMH, 3
BHKOPHCTAHHAM MOB NPOrPaMyBaHHsI BHCOKOr0 pPiBHS, MOB
BHCOKOr0 PpiBHSI 3 HHM3bKMM piBHeM aOcTpakmii i MOBH
Assembler. JloBeneHo eQeKTHBHICTH NPOrPaMHOIO
3a0e3Me4YeHHs] TeHepYBaHHs ICeBJIOBUIIAKOBUX MOCJIiA0BHOCTEMH
MAaKCHMMAJIBHOI [OB:KMHH, fIKe 0a3yeTbcsl Ha aJIropurMax 3
BHKOPHCTAHHAM KOMaHJ MaHIiNyJII0BaHHA OiTamu.

Keywords—pseudorandom number generator; maximum length
sequence; a Galois field; algorithm; Assembler.

Knwuoei cnosa—zenepamop nceedosunadxosux uucen; M-
nocnioognicmu; none I'anya; anzopumm; Acemonep.
L INTRODUCTION

The pseudorandom number generators are widely used in
different areas of scientific and practical activities, simulation

C. oniHoBcbKa
kadenpa iHpopMaTUKH
[pukapniaTchKuii HalliOHABHUN YHIBEPCUTET
imeni Bacuis Credannka
IBaHO-®pankiBchk, YKpaina
sdolinovska@gmail.com

modeling, methods of statistical testing, probabilistic testing, and
applied cryptography.

One of the ways of obtaining random numbers is the use of
mathematical transformations which allow to obtain a numeric
sequence, which by their characteristics is close to real random
processes.

There are a number of methods for constructing pseudorandom
number generators [1-2]. Mainly focuses on hardware
implementation of digital elements, although many of the software
modules is the need to generate pseudorandom numbers it
programmatically.

The aim of the report is the analysis of the algorithmic features of
generating pseudo-random sequences over a Galois field GF(2) by
means of programming languages high-level programming language
of high level with low abstraction level and the Assembler language.

II. DESCRIPTION OF BASIC MATERIAL

Pseudorandom number generators are widely used in various
areas of scientific and practical activities, such as simulation,
methods of statistical tests, probability testing and applied

cryptography.
Mathematical transformations are one of the ways to generate

random numbers. This method provides a numerical sequence with
characteristics similar to real random processes.

87

There are several methods for constructing pseudorandom
number generator (PRG). Basically it is a hardware implementation
based on digital elements, which allows to provide high speed
characteristics of the generator, although many software modules
needs to generate pseudorandom sequences using software methods.
Algorithmic generator component implementation 1is given
insufficient attention.

The purpose of the report is the analysis of algorithmic software
features to generate pseudorandom sequence over a Galois field
GF (2) by high-level languages, high-level programming language
with low level of abstraction and Assembler language.

A key problem in implementing generators pseudorandom binary
sequences is the problem of the formation of pseudorandom sequence

(PRS) maximum length L[=20-1 statistical

characteristics.

with acceptable
One of the main ways to implement the generators PRS is the use
of linear shift registers (LSR) a maximum period of linear feedback.

This way, under certain conditions, provides a pseudo-random
binary M-sequences or maximum length sequences (MLS).

When using transformations over Galois fields GF (p”) for M-
sequence must fulfill certain conditions [3]:

e p- prime number.
e All initial values are not necessarily equal to 0.

e Generating polynomial is irreducible (not decomposed into
multipliers lower degree).

e Generating polynomial is primitive (minimal polynomial of
a primitive element of the field GF (p) for a positive
integer m).

The figure shows the block diagram of the PRG configuration
over Galois primitive polynomial linear feedback is formed based on

a irreducible primitive polynomial /' 32=x32+x22+x2+x+1 [4]:

1 e e TeT1e]

Block diagram PRG

Fig. 1.

Galois generator compares each nonzero element of the field GF
(232) corresponding degree primitive element W = | 1; 0 |, modulo
£32=x324+x22+x2+x+1.

Depending on the outcome of the command and the installation
ROL and value CF, bats reverse connection will be formed according
to the following table (operation XOR):

TABLE I. CONVERTING BITS BASED ON THE CARRY FLAG

CF Previous bit Runny bits Action
1 0 1 Inversion
1 1 0 p.bits
0 0 Duplication
0 1 1 p.bits

To generate PRS effective methods are [5-6]:
1. Using bit instruction.

2. Using bit mask.

3. Using bits field.

1. Use the bit instruction

With the implementation of this oscillator manner appropriate to
have used the shift command and groups intended for inspection or
installation of specific bits register using Carry Flag processor
architecture IA-32. So for a status register 20 bit and 21 bit setting
(for the circuit shown in Figure 1), you can use the following
command sequence (MASM32):

NextCode proc ;START CONVERSION
ROL EAX,1 ; Rotate left EAX trough carry
IF CARRY?; Test carry flag (CF) =17
BT EAX, 20; Insert bit No20 EAX in CF
IF CARRY? ; CF ==
BTR EAX, 21 ; reset bit No21 EAX 0

.else
BTS EAX, 21 ; set bit No21 EAX 1
.endif
.elsén ; CF =

BT EAX, 20 ;Insert bit No20 EAX in CF
IF CARRY? ; CF ==
BTS EAX, 21 ; set bit Ne21 EAX 1
.else
BTR EAX, 21 ;reset bit No21 EAX 0
.endif

2. Using bits field

High level languages allow you to use structures that represent a
specified number of bits is "bit field". The bit field is interpreted as
an integer type.

struct BitSet {
unsigned short m00 : 1;
unsigned short mO1 : 1

1'1'risigned short m30 : 1;
unsigned short m31 : 1

B
This arrangement allows you to get easy access to single bits by

performing the necessary manipulations with them, but characterized
redundancy command processor to check individual fields.

88

To perform shift operations is advisable to create the type of
union bit field and a variable of type integer (C language):

union mKode {
unsigned int kode;
BitSet mGalua;
}s
Then shift operation and establishing certain bit may be
represented by the following code:

if (t.mGalua.m31==1)CF=true; //check bits Ne31
t.kode=t.kode << 1; //shift left by 1 bit
if (CF) {
if (t. mGalua.m20 == 1) //check bits Ne20
t.mGalua.m21 = 0;//reset bits No2 1
else tmGalua.m21 = 1; //set bits No21
else {
if (t. mGalua.m20 == 1) //check bits Ne20
t.mGalua.m21 = 1; //set bits Ne21
else t mGalua.m21 = 0; //reset bits No21

..}
3. Using bit mask

The bulk of the high-level languages, can perform bitwise
operations on operands that are the basis for the program PRG.

Checking and setting specific bit can be performed using bit-wise
operations.

For example, the block diagram in Figure 1:

check bit Ne20 - mask 0x00100000, and the operation "logical
AND";

setting bit Ne21 - mask 0x00200000 and operation "logical OR";

reset bit Ne21 - mask OXFFDFFFFF and operation "logical AND".

Using masks for bitwise operations in the bit field for program
PRG, may presented as code (C#):

bool CF = false;

if ((t&0x80000000)>0)CF=true;//check bits Ne31
t=t<<l1;
if (CF){

if{(t & 0x00100000) > 0) //check bits Ne20
t &= OxFFDFFFFF, reset bits Ne21
else t |= 0x00200000; //set bits Ne21

elsé .{
f(t&0x00100000) = 0) // check bits Ne20

t &= OxFFDFFFFF; //reset bits No21
else t |=0x00200000; //set bits No21

}

II1. TEST CONDITIONS

Software implementation of the PRG of the field GF (232) based
on a primitive irreducible polynomial f 32= x32+x22+x2+x+1 and
length 231

Software:

OS — Windows 10 Home x32

bits instruction: MASM32

bits mask: Visual C# Express 2015
bits field: Visual C++ Express 2015

Hardware

Intel® Core™ i5-4200U (up to 2.60 GHz) 4GB DDR3

AMD Phenom II X4 955 Black Edition 3.2GHz, RAM 4GB
DDR2

Testing performance (seconds)
60

50
421

40
30
20

142
11,3
) .
0

Bit Set Bits mask Bit field

Ointel® Core™ i5-4200U (up to 2.60 GHz) Q3'13 ®AMD Phenom Il X4 955 Black Edition 3.2GHz Q4'09

Fig. 2. Testing performance (seconds)

CONCLUSION

Thus, studies have found that program implementation to generate
the PRS over a Galois field GF (2) offer a number of ways that include
algorithmic complexity and speed implementation.

Using bit instruction, are available in the language Assembler
have the highest performance, though inferior to hardware
implementation and are complex algorithmic solution.

Using bit mask available in almost all programming languages are
characterized by simplicity and algorithmic implementation is their
best solution, providing sufficient performance.

Using bits field in high-level languages with a low level of
abstraction can significantly simplify the algorithmic complexity, but
do not provide sufficient performance generation.

It should be mentioned that speed software implementation
significantly depends on the CPU architecture, speed RAM.

REFERENCES

(1] JLB. Ilerpummun, TeopeTnuHi OCHOBH NEepeTBOPEHHs (HOpMHU Ta
udpoBoi 06podku iHpopmanii, K.: [3iIMH MOV, 1997.

[21 B. M. Ky3nenos I'enepaTopsl ciydyallHbIX U IICEBAOCIYYaHHBIX
IOC/IE/IOBATEILHOCTE Ha LU(POBBIX 3IEMEHTAX 3aIePIKKH
(OCHOBBI TEOPHU M METOJBI ITOCTPOCHUS): JAWC. ... JOKT. TE€XH.
Hayk: 05.13.05 : 3axumena 28.01.2012. / Ky3neuos, Banepuii
Muxaiinoeuy; Kazanb, 2011.- 347 c.

[3] Donald E. Knuth. Art of Computer Programming, Volume 2:
Seminumerical Algorithms. (3rd Edition). Addison-Wesley.
Professional; 3 edition, 1997.- 784 p.

[4] A. S beneuxuii IIpuMHTHBHBIE MaTpULEI M T'€HEPATOPHI
NICEBJIOCITYJallHbIX ~ TmocienoBaTensHocTedt Tamya / /
benenxuii. A 4., Beneuxuii. E.A. // Wudopmarmonnsie

TeXHOJOoruu B odpasoBanuu. - 2014. - Ne 18. — C. 14-29.

[5]1 Schneier, Bruce. Applied Cryptography, Second Edition:
Protocols, Algorthms, and Source Code in C (cloth) (Publisher:
John Wiley & Sons, Inc. 816 p.

[6] H.®.Kaszakoa Ilporpammuas peanusalusi YHHUBEPCAIBHOTO
CTaTUCTHYECKOr0 TecTa Maypepa JUIS] aHaIM3a
nceBl0Cay4aifHbIX nocienoBarensHocreit / H. @. Kazaxosa, 0.
B. Illep6Ouna // Indopmauiitna 6e3nexa. - 2011. - Ne7(161). — C.
289-296.

89

