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Abstract—We describe a new implementation of 
asynchronous pi-calculus in Maude  which utilizes  CINNI — a 
calculus of explicit substitutions — to cope with name binding. 
We believe that using late name binding, instead of early, 
simplifies the implementation, which we intend to use later as 
part of a workflow specification system. 
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I.  INTRODUCTION 
The calculus of mobile processes (pi-calculus, [1])  is one 

of the most popular proces algebras used in specification of 
workflows  (see e.g., [2], [3], [4]), or security protocols (see 
e.g., [5]) There are many implementations of pi-calculus which 
allow actually to run the pi-processes and to explore and 
analyze the possible execution  paths. Here we describe the 
implementation in  the language and term rewriting framework 
Maude [6]. This is by far not the first implementation of pi-
calculus in Maude (see, e.g., [7]). In fact, we follow the basic 
ideas of [7] such as incorporating transition labels into the 
process terms (c.f., [8]) and utilizing CINNI [9] — a calculus 
of explicit substitutions — to deal with name binding. 
However, instead of early binding semantics, like in [7] we 
implement a late semantics in a way in which the label part of 
the process can also bind names, and to the best of our 
knowledge this is the first such implementation. 

II. ASYNCHRONOUS PI-CALCULUS 
Let P, Q, … (perhaps with indices) denote pi-process terms 

and let small latin letters denote channel names. Then the 
grammar of asynchronous pi-calculus is given by (where I is 
finite and guards �::=�|�(�) ): 

    :: 0 . | ( | ) ! | , ,i i
i I

P P a b P Q x P P x y P Q


      

We will write .i i
i I

P


  using an associative and 

commutative operator „+”. We also consider “|” to be 
associative and commutative with 0 being the neutral element.  
Operators  x   and  a x   bind x in  x P  and  . ,a x P  
respectively (and these are the only binding operations). We 
denote by “  ” the  -equivalence relation on pi-terms. Thus, 

e.g., if y does not occur free in P we must have that   .a x P  

and     . :a y x y P  are  -equivalent, where  :x y P   
denotes the capture avoiding substitution of name y for free 
occurences of x in P. We assume that  -equivalent terms 
behave identically. Processes evolve by performing internal 
actions as well as  receiving and sending public or private 
names. 0 is the empty process which does nothing, process 
a b   sends name b on the channel identified by name a. For 

any i I , process .i i
i I

P


   can perform either an internal 

action (if τi  ) or receive value on some channel a (if 
 i a x    and then become iP . Here our semantics is late 

because we do not consider the value actually received as part 
of the transition. |P Q   is a parallel composition of processes 
which can evolve independently or communicate, !P  
replicates P,  x P   is a restricted process in which x is 
private (but it can be sent to other process), and finally 
  , ,x y P Q  evolves as either P or Q depending on whether 
x is the same name as y or not. Thus, pi-process terms are states 
in the labeled transition system.  

We write P Q


  when a process P can transition into Q 
performing an action with label    There are four kinds of 
action labels:   (internal transition),  a x  (value receive), 
a b  (public name sent), a b   (private name sent). The 
possible transitions can be described precisely using rules: we 
allow those and only those transitions which are provable from 
the rules. For instance, the first rule below describes  
communication between parallel processes, the second 
describes sending of some private name: 

 

   

'         FCOM,  OPEN.
:

a b a ba x

a x

P P Q Q P Q a b

P Q P x b Q b P Q






   

   
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III. IMPLEMENTATION 
The main problem of implementing labeled transition 

system in term rewriting system such as Maude, is that they 
usually do not support labeled transitions. The fundamental 
idea of [8] is to incorporate labels into process term — 
effectively the process term drags with itself the full trace of all  
actions performed so far by the process. Formally, one extends 
the grammar of process terms with new syntactic category of 
action process terms AP: 

:: |{ }AP P AP 

where    is an action label (e.g.,   ,   ,a x  etc.) and P  is an 
ordinary pi-process term.   Denote by the unlabelled thick 
arrow “⇒” the rewriting relation among action process terms. 
It is defined with the following rules: 

 
 

 
        

1STEP,    TRANS.
P Q Q APP Q

P Q P AP


  

   
  

where P, Q are pi-proces terms, AP is an action process term 
and   is an action label. We assume that action labels of the 
form  a x  and a b   bind name x in action process terms of 

the form   a x AP  and  a x AP . Accordingly, we extend 
conversion to action process terms and identify -ߙ  -
equivalent action process terms.  

 For example, assume that 
 a x

P Q . Because of 
identification of behaviour of  -equivalent terms we must also 

have 
 
 :

a y

P x y Q   for any name y which is not free in Q. 

This is evident when we write the transition 
 a x

P Q  with 

unlabeled rewritings as   P a x Q . Indeed, because we 
extend the ߙ-equivalence to action process terms we have that 

  a x Q  and    :a y x y Q  are  -equivalent.  

 Implementing capture avoiding substitutions and ߙ-
conversion necessary to enable some transitions is 
cumbersome. One way to deal with it is to use de Bruijn 
indices instead of names. This would however be unreadable 
for humans. A good balance between readability and 
implementability is provided by the calculus of explicit 
substitutions CINNI [9], and we follow [7] in utilizing it. 
Namely, except for binding constructs, we use channel names 
of the form na , where a is a (user defined) name and n is a 
natural number.   

 The meaning of n  is as follows: Suppose that na  occurs in 
the process or action process term T. Then n is the number of 
operations binding name a in T which one must pass while 

going up the parse tree of ܶ before either encountering an 
operation which binds this na  or the root of the parse tree.   

 The signature of action process terms is extended with 
various substitution operators (including the usual capture 
avoiding substitution) defined through equations. On the other 
hand, there is no longer any  -equivalence.   

 As an example consider the following translation of the 
OPEN rule mentioned above into unlabeled rewritings with 
CINNI:  

 
   

 
   

0 1 0

1 2OPEN ,   OPEN
m m

m m

P y x Qy x P x x Q

x P y x Q x P x x Q
  

     
  

 

CONCLUSION 
We created a new implementation of late binding semantics 

for asynchronous  pi-calculus in Maude. We partly use the 
ideas from earlier papers ([7], [8]). A novel (to the best of our 
knowledge) aspect of this implementation  is extending ߙ-
equivalence to labeled process terms. We found out that 
implementing late semantics is easier and more natural than 
late semantics (as in [7]), particularly when using our main 
idea. We created this implementation to become a part of a 
system for workflow specification we are currently working 
on. 
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