

131

Implementation of Late Name Binding,
Asynchronous Pi-Calculus in Maude

Bartosz Zieliński
Department of Computer Science

Faculty of Physics and Applied Computer Science,
University of Łódź

ul. Pomorska nr 149/153, 90-236 Łódź
bzielinski@uni.lodz.pl

Paweł Maślanka
Department of Computer Science

Faculty of Physics and Applied Computer Science,
University of Łódź

ul. Pomorska nr 149/153, 90-236 Łódź
pmaslan@uni.lodz.pl

Abstract—We describe a new implementation of
asynchronous pi-calculus in Maude which utilizes CINNI — a
calculus of explicit substitutions — to cope with name binding.
We believe that using late name binding, instead of early,
simplifies the implementation, which we intend to use later as
part of a workflow specification system.

Keywords—pi calculus; CINNI; late name binding

I. INTRODUCTION
The calculus of mobile processes (pi-calculus, [1]) is one

of the most popular proces algebras used in specification of
workflows (see e.g., [2], [3], [4]), or security protocols (see
e.g., [5]) There are many implementations of pi-calculus which
allow actually to run the pi-processes and to explore and
analyze the possible execution paths. Here we describe the
implementation in the language and term rewriting framework
Maude [6]. This is by far not the first implementation of pi-
calculus in Maude (see, e.g., [7]). In fact, we follow the basic
ideas of [7] such as incorporating transition labels into the
process terms (c.f., [8]) and utilizing CINNI [9] — a calculus
of explicit substitutions — to deal with name binding.
However, instead of early binding semantics, like in [7] we
implement a late semantics in a way in which the label part of
the process can also bind names, and to the best of our
knowledge this is the first such implementation.

II. ASYNCHRONOUS PI-CALCULUS
Let P, Q, … (perhaps with indices) denote pi-process terms

and let small latin letters denote channel names. Then the
grammar of asynchronous pi-calculus is given by (where I is
finite and guards �::=�|�(�)):

    :: 0 . | (|) ! | , ,i i
i I

P P a b P Q x P P x y P Q


   

We will write .i i
i I

P


 using an associative and

commutative operator „+”. We also consider “|” to be
associative and commutative with 0 being the neutral element.
Operators  x and  a x bind x in  x P and  . ,a x P
respectively (and these are the only binding operations). We
denote by “  ” the  -equivalence relation on pi-terms. Thus,

e.g., if y does not occur free in P we must have that   .a x P

and     . :a y x y P are  -equivalent, where  :x y P
denotes the capture avoiding substitution of name y for free
occurences of x in P. We assume that  -equivalent terms
behave identically. Processes evolve by performing internal
actions as well as receiving and sending public or private
names. 0 is the empty process which does nothing, process
a b sends name b on the channel identified by name a. For

any i I , process .i i
i I

P


 can perform either an internal

action (if τi ) or receive value on some channel a (if
 i a x  and then become iP . Here our semantics is late

because we do not consider the value actually received as part
of the transition. |P Q is a parallel composition of processes
which can evolve independently or communicate, !P
replicates P,  x P is a restricted process in which x is
private (but it can be sent to other process), and finally
  , ,x y P Q evolves as either P or Q depending on whether
x is the same name as y or not. Thus, pi-process terms are states
in the labeled transition system.

We write P Q


 when a process P can transition into Q
performing an action with label  There are four kinds of
action labels:  (internal transition),  a x (value receive),
a b (public name sent), a b (private name sent). The
possible transitions can be described precisely using rules: we
allow those and only those transitions which are provable from
the rules. For instance, the first rule below describes
communication between parallel processes, the second
describes sending of some private name:

 

   

' FCOM, OPEN.
:

a b a ba x

a x

P P Q Q P Q a b

P Q P x b Q b P Q






   

   

132

III. IMPLEMENTATION
The main problem of implementing labeled transition

system in term rewriting system such as Maude, is that they
usually do not support labeled transitions. The fundamental
idea of [8] is to incorporate labels into process term —
effectively the process term drags with itself the full trace of all
actions performed so far by the process. Formally, one extends
the grammar of process terms with new syntactic category of
action process terms AP:

:: |{ }AP P AP 

where  is an action label (e.g.,  ,   ,a x etc.) and P is an
ordinary pi-process term. Denote by the unlabelled thick
arrow “⇒” the rewriting relation among action process terms.
It is defined with the following rules:

 
 

 

1STEP, TRANS.
P Q Q APP Q

P Q P AP


  

   

where P, Q are pi-proces terms, AP is an action process term
and  is an action label. We assume that action labels of the
form  a x and a b bind name x in action process terms of

the form   a x AP and  a x AP . Accordingly, we extend
conversion to action process terms and identify -ߙ -
equivalent action process terms.

 For example, assume that
 a x

P Q . Because of
identification of behaviour of  -equivalent terms we must also

have
 
 :

a y

P x y Q  for any name y which is not free in Q.

This is evident when we write the transition
 a x

P Q with

unlabeled rewritings as   P a x Q . Indeed, because we
extend the ߙ-equivalence to action process terms we have that

  a x Q and    :a y x y Q are  -equivalent.

 Implementing capture avoiding substitutions and ߙ-
conversion necessary to enable some transitions is
cumbersome. One way to deal with it is to use de Bruijn
indices instead of names. This would however be unreadable
for humans. A good balance between readability and
implementability is provided by the calculus of explicit
substitutions CINNI [9], and we follow [7] in utilizing it.
Namely, except for binding constructs, we use channel names
of the form na , where a is a (user defined) name and n is a
natural number.

 The meaning of n is as follows: Suppose that na occurs in
the process or action process term T. Then n is the number of
operations binding name a in T which one must pass while

going up the parse tree of ܶ before either encountering an
operation which binds this na or the root of the parse tree.

 The signature of action process terms is extended with
various substitution operators (including the usual capture
avoiding substitution) defined through equations. On the other
hand, there is no longer any  -equivalence.

 As an example consider the following translation of the
OPEN rule mentioned above into unlabeled rewritings with
CINNI:

 
   

 
   

0 1 0

1 2OPEN , OPEN
m m

m m

P y x Qy x P x x Q

x P y x Q x P x x Q
  

     

CONCLUSION
We created a new implementation of late binding semantics

for asynchronous pi-calculus in Maude. We partly use the
ideas from earlier papers ([7], [8]). A novel (to the best of our
knowledge) aspect of this implementation is extending ߙ-
equivalence to labeled process terms. We found out that
implementing late semantics is easier and more natural than
late semantics (as in [7]), particularly when using our main
idea. We created this implementation to become a part of a
system for workflow specification we are currently working
on.

REFERENCES
[1] Robin Milner, “Communicating and Mobile Systems: the Pi-Calculus,”

Cambridge University Press, 1999
[2] Howard Smith and Peter Fingar, “Workflow is just a pi process”,

BPTrends, November, pages 1-36, 2003.
[3] Frank Puhlmann and Mathias Weske “A look around the corner: the pi-

calculus,” In Transactions on Petri Nets and Other Models of
Concurrency II, pages 64-78. Springer, 2009.

[4] Bartosz Zieliński, Ścibor Sobieski, Piotr Kruszyński, Maciej Sysak,
and Paweł Maślanka, “Object pi-calculus and document workflows,” In
Model and Data Engineering, pages 227-238. Springer, 2015.

[5] Mark D. Ryan and Ben Smyth, “Applied pi calculus,” chapter in
Véronique Cortier & Steve Kremer (editors) Formal Models and
Techniques for Analyzing Security Protocols, IOS Press, 2011.

[6] Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, Jose Meseguer, and Carolyn Talcott, “The maude 2.0
system,” In Robert Nieuwenhuis, editor, Rewriting Techniques and
Applications (RTA 2003), number 2706 in Lecture Notes in Computer
Science, pages 76-87. Springer-Verlag, June 2003.

[7] Prasanna Thati, Koushik Sen, and Narciso Marti-Oliet, “An executable
specification of asynchronous pi-calculus semantics and may testing in
maude 2.0”, Electronic Notes in Theoretical Computer Science, 71:261-
281, 2004.

[8] Alberto Verdejo and Narciso Martí-Oliet, “Implementing CCS in Maude
2”, Electronic Notes in Theoretical Computer Science, 71:282-300,
2004. WRLA 2002, Rewriting Logic and Its Applications.

[9] Mark-Oliver Stehr, “Cinni-a generic calculus of explicit substitutions
and its application to lambda-, sigma- and pi-calculi,” Electronic Notes
in Theoretical Computer Science, 36:70-92, 2000.

