

32

Переписування Семантики Історій Користувача
Сьцібор Собіескі, Бартош Зієлінскі, Павел Масьлянка

Кафедра комп'ютерних наук,
факультет фізики та прикладної інформатики,

Університет Лодзь,
Лодзь, Польща

{scibor.sobieski, bzielinski, pmaslan}@uni.lodz.pl

Rewriting Semantics of User Stories
Ścibor Sobieski, Bartosz Zieliński, Paweł Maślanka

Department of Computer Science,
 Faculty of Physics and Applied Informatics,

University of Łódź,
Łódź, Poland

{scibor.sobieski, bzielinski, pmaslan}@uni.lodz.pl

Анотація—Ми описуємо виконувану семантику,
засновану на мультизмісній перезапису для користувацьких
історій - популярного формату для опису вимог користувача.
Семантика зосереджена на захопленні основних операцій
(CRUD) з передачею даних та потоків даних між учасниками,
що беруть участь у розповідях, і абстракції від складних
операцій як незрозумілі терміни (кодування залежностей
даних). Семантика достатня для аналізу доступності.
Переклад історій користувача, доповнений моделлю даних у
систему перезапису, досі є посібником, але ця робота є
основою для майбутнього компілятора історії користувачів.

Abstract—We describe an executable semantics based on
multiset rewriting for user stories — a popular format for
describing user requirements. The semantics focuses on
capturing the basic (CRUD) operations on data and data flow
between actors involved in the stories and abstracts away
complex operations as uninterpreted terms (encoding data
dependency). The semantics is sufficient for reachability analysis.
Translation of user stories augmented with data model into a
rewriting system is manual so far, but but the present work is a
foundation for a future user story compiler.

Ключові слова—користувацькі історії; багатозаписний
перепис; виконувана семантика; вимоги техніки;

Keywords—user stories; multiset rewriting; executable semantics;
requirements engineering;

I. INTRODUCTION
The two established formats for describing user

requirements — user stories and use cases — are intended
mainly for human consumption. They are written in natural
(though usually constrained) language, easily understandable
by non-programmer stakeholders. While specifications in the
form of user stories or use cases are not necessarily machine
unreadable (cf. [1]), automated verification and testing requires
some kind of formal semantics.

 In this paper, we attempt to provide an executable
semantics for user stories (in the Csee format [2]). More
precisely, we associate to a collection of stories augmented
with a data model a multiset rewriting system, representable as
a coloured Petri Nets with inhibitor edges and ability to
generate fresh nominal values (cf. [3]). Currently the
association is done manually, however, we are working on a
``compiler'' for user stories (written in a constrained English
parsable without natural language processing tools, cf. [4]).

Creating the executable semantics we focused on capturing
the basic (CRUD) operations on data and data flow between
actors involved in the stories. The result bears similarity to
specification of artifact-centric business process (see e.g., [5],
[6]). Complex operations are abstracted away as uninterpreted
terms (encoding data dependency). The semantics is detailed
enough to perform reachability analysis to prove that desirable
final states of a case are attainable through legal user actions,
and undesirable data transformations and accesses are not.

 When presenting the semantics, we decided to dispense
with Petri Net pictures which would be too complex and less
susceptible to piecewise introduction. Instead we use actual
multiset rewriting rules. Note that such rules are directly
translatable into rewriting language and system Maude [7]
often used to express and test formal specifications (see e.g.,
[8], [9], [10] and also to simulate a variety of Petri Nets [11],
[12].

II. FACTS AND MULTISET REWRITING

A. Values
All values we use are typed. Types can be divided into

abstract and concrete ones. Concrete ones contain defined
operations and relations (usually through equations). Abstract
types may contain constructors, but no defined operators and
relations. We allow matching (e.g., in rewrite rules) only on

33

fully reduced terms which may contain constants, variables and
constructors but no defined operators. Thus, e.g., in case of
natural numbers ℕ (a concrete type) we can match on 0, s(m),
s(s(m)) or 3:=s(s(s(0))), where m: ℕ is a variable, and s: ℕ →
ℕ and 0: → ℕ are natural numbers constructors (successor and
zero, respectively), but we cannot match on m+n as “+” is a
defined operator.

 Abstract types are further divided into nominal ones (for
which the only constructors are constants) and non-nominal
ones (with non-constant constructors). Nominal types serve as
identifiers of objects, and for each nominal type we can
generate fresh values of this type. Non-nominal abstract types
serve as representations of computed values where we want to
keep the computation abstract.

B. Facts
Facts are instances of base predicates (one can think of

them as rows in a database table, if each row stored also a table
name). A fact P(a1,…, an) consists of a predicate name P and a
list of values a1,…, an (fully reduced terms serving as predicate
arguments). Non-ground facts may contain variables among (or
inside) arguments ai.

A predicate signature is a tuple of types. We write
P:T1,…,Tn if P is a predicate name with signature T1,…,Tn. In
this case all facts P(a1,…, am) with P as predicate name are
such that m=n and ai:Ti, i∈{1,…,n}.

C. Multisets of facts
 We represent state of the system as a multiset of ground

facts. Changes to this state are represented by multiset rewrites.
We assume usual multiset operations Γ∪Δ (union) Γ∩Δ
(intersection), Γ-Δ (difference). ∅ is the empty multiset.
When writing rules we often identify facts with single-element
multisets and consider ``,'' (comma) to be an associative and
commutative multiset constructor corresponding to multiset
union. We denote by Var(Γ) the set of variables occurring in
the multiset Γ.

Multisets of facts, apart from representing state of the
system may also appear as arguments of abstract aggregate
functions.

D. Domain conditions
A domain condition is a quantifier free, first order formula

which can refer to domain predicates (such as ordering on
numbers) but not to base predicates stored in the multiset
database.

E. Rewrite rules
A rewrite rule λ=(p, C, Γ, Δ, Δ’) consists of term p of type

Person denoting agent of the action, domain condition C and
three (non-ground) multisets Γ, Δ, and Δ’ such that
Var(C)∪Var(Γ)∪Var(p)⊆Var(Δ) and any x∈Var(Δ’)-Var(Δ)
is of nominal type.

We say that a ground multiset of facts Ψ rewrites to a
ground multiset Ψ’ with rule λ, agent a, and ground substitution

σ (i.e., σ(x) is a ground term for all x∈Var(Δ’)∪Var(Δ), which
we denote by Ψ→λ,σ,a Ψ’, if and only if

 σ(C) is true,

 σ(p)=a,

 σ(Γ)⊈Ψ and σ(Δ)⊆Ψ ,

 Ψ’= (Ψ-σ(Δ))∪σ(Δ’),

 for all x∈Var(Δ’)-Var(Δ), σ(x) is fresh.

Let Ψ0→λ0,σ0,a0Ψ1→λ1,σ1,a1….→λi,σi,aiΨi+1, where Ψ0 is some
initial multiset of facts. A value c of nominal type is fresh at
i≥0 if it did not occur in Ψ0∪…∪Ψi-1.

To improve readability we use an alternative syntax for
rules. Namely, we write

C;¬α,β;γ⇒pδ,

where ¬α=¬α1,…,¬αn, β=β1,…,βm, etc., and αi's, etc., are facts,
to denote the rule

(p, C, α, {β}∪{γ}, {β}∪{δ})

F. Rewrite systems
A rewrite system R is a set of rewrite rules. We write

Ψ→R,a Ψ’ if there exists some λ∈R and a ground substitution σ
such that Ψ→λ,σ,a Ψ’.

III. FROM USER STORIES TO REWRITING SYSTEM
In this section we show how to construct from a colection

of user stories augmented with data model a multiset rewriting
system. We will use as a running example an actual
specification of a system supporting national selection of
candidates for study programmes at the universities in New
Guinea. Because of pecular conditions of life in New Guinea,
candidates do not apply to a particular university. Instead, they
submit their applications to the Department of Higher
Education, Research, Science and Technology (DHERST).
Higher education institutions (HEI) submit information about
study programmes. Then, during national selection, candidates
are matched with programmes and universities based on
plethora of factors, which include student abilities, level of
education and personal preferences.

A. From entities to predicates
As remarked above, our rewriting semantics does not

attempt to capture all of requirements contained in user stories.
Instead, it focues mostly on CRUD operations on data. Thus,
we need to augment the user stories with data model of
business entities referred to in the stories, perhaps partially
extracted from stories themselves using techniques described in
[1]. If entities are modeled using E/R technique, then the E/R
model can be converted to definitions of predicates using usual
techniques for transforming E/R model into relational schema.
That is, key and obligatory single-valued attributes of an entity

34

or relationship become a arguments of a predicate with the
same name as the entity/relationship, and nullable and many-
valued attributes give rise to separate predicates with the same
name as the corresponding attribute. As an example consider
the entities corresponding to HEI and the list of HEI:

 entity HEI(id_T id, string name, string street, person
chief),

entity HEIList(id_T id, year year, id_T multival hei).

In the second entity, the year attribute says for which year
the list was composed. The first entitity gives rise to a single
predicate

HEI : id_T, string, string , person

The second entity gives rise to two predicates, the second
of which corresponds to the multivalued attribute hei
containing identifiers of higher education institutions taking
part in national selection:

HEIList : id_T, year, hei : id_T, id_T.

Thus, hei(x,y) means that a higer education institution x
belongs to the list y.

B. User stories and rewriting rules
Each user story gives rise to one or more rewriting rules.

We assume that each story corresponds either to some CRUD
operation (creation or update of entities) or to using data to
compute or view something. The latter is abstracted as creation
of special facts, e.g., of the form view(x, y), i.e., person x
viewed entity with identifier y.

C. Tokens
Tokens are special facts. While the usual facts encode

business relevant data, tokens encode information related to
control flow. Names of tokens start with “#”. The basic token
is argument-less and named #next. This token symbolizes the
choice of the next story. If the user story is implemented with
more than one rewriting rule, the story's “entry” rule replaces
#next with story-specific token. The rule ending execution of a
given story recreates the #next token. This token can be
thought of as corresponding to the non-deterministic choice of
an applicable story, and sometimes of value from the active
domain. “Internal” tokens of the given story often have a
natural argument corresponding to the maximal re-creation
count to prevent infinite executions, as well as other arguments
which store values which must be the same across all rewrites
within execution of the same user story, such as the agent.

D. Example rules
Consider the following user story:

As a DHERST admin I would like to create list of HEI if it
doesn’t exist for the current year that would take part in
National Selections.

The italicized part above is an explanation for humans.
What is important for our semantics is the agency description
“As a DHERST admin), and main verb “create” followed by
object “list of HEI for the given year” and additional condition
“if it doesn’t exist”. Thus, from the point of view of our
semantics, the story describes creation of the new HEIList

entity by a person assigned role of DHERST admin. The
“current year being x” and “x having the role DHERST admin”
is described by predicates with obvious names. The list is
created empty (default interpretation of creation is that many-
valued and optional attributes are unassigned). Thus, the
semantics of the above story is captured by the following single
rule (x, y, z, p are variables):

true; ¬HEIList(x, y), DHERSTAdmin(p), year(y) ; #next
⇒p HEIList(z, y), #next.

Above, z is a variable not bound by the left hand side of the
rule, and thus it will be assigned a fresh identifier of the
HEIList entity when this rule is executed. Note that the rule
consumes the #next token but then it recreates it. Let us now
consider the example of a story which compiles into multiple
rules:

As a DHERST admin I want to update list of HEI for the
current year.

Here the main verb is “update”. In this context it means
deleting some HEI from the list and adding new ones. We
assume that the information about a given higher education
institution already exists in the system, so “adding a new one”
means picking the HEI entity and adding it to the list. We
utilize additional token predicate #upd : ℕ, Person, id_T. The
token #upd(n, p, l) stores an agent (with role DHERST admin)
who is the subject of this story, and the identifier l of the list of
HEI which is being updated, so that all the rules update the
same list. The number in the first argument limits the number
of possible recreations of the token so that a given user story
execution makes a limited number of elementary update
operations and we avoid infinite loops when simulating. The
first rule simply picks up the agent and the list to be updated
and stores them in the token:

true; DHERSTAdmin(p), HEIList(x,y); #next
 ⇒p #upd(N, p, x).

In the above rule, p, x, y are variables, however N is not a
variable but some fixed number describing a maximal number
of recreations of the #upd token. Observe that the #next token
is not recreated. This ensures rewritings corresponding to
different user stories cannot occur until this story is finished.

The next two rules add an existing HEI to the list (if it is
not there already, or deletes some HEI from the list. Note that
both rules require the #upd token with first argument greater
than 0 (which is ensured by matching with s(0)) and that both
rules recreate the #upd token with first argument decreased by
1:

true; ¬hei(h, x), HEI(h, n, a, c); #upd(s(m), p, x)
⇒p hei(h, x), #upd(m, p, x).

true; ; hei(h, x), #upd(s(m), p, x) ⇒p #upd(m, p, x).

Note that instead of matching against s(m) we could have
instead use the condition part of the rule, e.g.,

m > 0; ; hei(h, x), #upd(m, p, x) ⇒p #upd(m-1, p, x).

35

The last rule serves to non-deterministically finish
execution of the present story by recreation of the #next token.
Observe that because we do not limit variable m, the story ends
after no more, but possibly less then N elementary update
steps, where N was the first argument of the #upd token created
in the first rewrite rule:

true;;#upd(m,p,x) ⇒p #next.

In the last example of converting user story to rewrite rules
we show how to abstract non-trivial computation. The story we
want to implement is as follows:

As a DHERST admin I can run Gale Shapley algorithm to
find best matching of available candidates and programs.

Clearly, we do not want to model or specify Gale Shapley
algorithm, as it is out of the scope of our executable semantics.
However, we can model the associated data flow. To make the
presentation more readable in the small space available, we
simplify significantly the data model. Namely, we suppose that
we have the following two two-argument predicates:

Cand : Cand_T, Prog : Prog_T.

We assume that elements of types Cand_T and Prog_T
store all the data about candidates and study programmes,
respectively. We also assume that we have constructor ga-sh :
FactMultiset → Matching, and a predicate match : Matching,
where Matching is the abstract type corresponding to the
results of Gale-Shapley algorithm, and FactMultiset is a type of
multisets of facts used when defining abstract aggregate
functions such as ga-sh. The story is implemented with the
following four rules:

true; DHERSTAdmin(p); #next
⇒p #dh(p), match(ga-sh(∅))

true; ; #dh(p), Cand(c), match(ga-sh(S))
⇒p #dh(p), match(ga-sh(S ∪ { Cand(c) })),

true; ; #dh(p), Prog(c), match(ga-sh(S))
⇒p #dh(p), match(ga-sh(S ∪ { Prog(c) })),

true; ¬ Cand(c), ¬ Prog(c’), match(ga-sh(S)) ; #dh(p)
⇒p #next, S

The first one picks DHERST admin and stores the choice in
a token, as well as creates an empty matching term. The next
two gather candidates and study programs, the last one
finishes story execution when all candidates and programs have

been aggregated. Note that it recreates facts about candidates
and programs temporarily removed from the multiset database.

CONCLUSION
We outlined how to assign an executable semantics to a

collection of user stories. Executable semantics we describe is
based on multiset term rewriting, and it tries to capture the
basic CRUD operations. Currently the assignement is done
manually, but we are working on a user story compiler.

REFERENCES
[1] M. Landhausser, A. Genaid, “Connecting user stories and code for test

development,” in Recommendation Systems for Software Engineering
(RSSE), 2012 Third International Workshop, pages 33-37, June 2012.

[2] Connextra. Connextrastorycard.
[3] M. Montali, A. Rivkin. “Model checking petri nets with names using

data-centric dynamic systems,” Formal Aspects of Computing,
28(4):615-641, 2016.

[4] Ś. Sobieski, B. Zieliński, “User stories and parameterized role based
access control,” in Model and Data Engineering, pp. 311-319, Cham,
2015. Springer International Publishing.

[5] R. Hull, “Artifact-centric business process models: Brief survey of
research, results and challenges,” in On the Move to Meaningful
Internet Systems: OTM 2008, pp 1152-1163, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[6] P.A. Abdulla, C. Aiswarya, M.F. Atig, M. Montali, O. Rezine.
“Recency-bounded verification of dynamic database-driven systems,” in
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS '16, pp.195-210, New York,
NY, USA, 2016. ACM.

[7] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
C. Talcott. “The Maude 2.0 system,” in Rewriting Techniques and
Applications (RTA 2003), LNCS pp. 76-87. Springer-Verlag, June
2003.

[8] G. Denker, J. Meseguer, C. Talcott, “Protocol specification and analysis
in Maude,” in Proc. of Workshop on Formal Methods and Security
Protocols, 1998.

[9] Ś, Sobieski, B. Zieliński, “Using Maude rewriting system to modularize
and extend SQL,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pp. 853-858. ACM, 2013.

[10] Ś, Sobieski, B. Zieliński, “Modularisation in Maude of parametrized
RBAC for row level access control,” in Advances in Databases and
Information Systems, pp. 401-414. Springer, 2011.

[11] M.O. Stehr, J. Meseguer, P.C. Olveczky. “Rewriting logic as a unifying
framework for Petri nets,” in Unifying Petri Nets: Advances in Petri
Nets}, pp. 250-303, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[12] J. Padberg. A. Schulz, “Model checking reconfigurable Petri nets with
Maude,” in Graph Transformation, pp. 54-70, Cham, 2016. Springer
International Publishing.

