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Анотація—Ми описуємо виконувану семантику, 
засновану на мультизмісній перезапису для користувацьких 
історій - популярного формату для опису вимог користувача. 
Семантика зосереджена на захопленні основних операцій 
(CRUD) з передачею даних та потоків даних між учасниками, 
що беруть участь у розповідях, і абстракції від складних 
операцій як незрозумілі терміни (кодування залежностей 
даних). Семантика достатня для аналізу доступності. 
Переклад історій користувача, доповнений моделлю даних у 
систему перезапису, досі є посібником, але ця робота є 
основою для майбутнього компілятора історії користувачів. 

Abstract—We describe an executable semantics based on 
multiset rewriting for user stories — a popular format for 
describing user requirements. The semantics focuses on 
capturing the basic (CRUD) operations on data and data flow 
between actors involved in the stories and abstracts away 
complex operations as uninterpreted terms (encoding data 
dependency). The semantics is sufficient for reachability analysis. 
Translation of user stories augmented with data model into a 
rewriting system is manual so far,  but but the present work is a 
foundation for a future user story compiler. 
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I.  INTRODUCTION 
The two established formats for describing user 

requirements — user stories and use cases — are intended 
mainly for human consumption. They are written in natural 
(though usually constrained) language, easily understandable 
by non-programmer stakeholders.  While specifications in the 
form of user stories or use cases are not necessarily machine 
unreadable (cf. [1]), automated verification and testing requires 
some kind of formal semantics. 

 In this paper, we attempt to provide an executable 
semantics for user stories (in the Csee format [2]). More 
precisely, we associate to a collection of stories augmented 
with a data model a multiset rewriting system, representable as 
a coloured Petri Nets with inhibitor edges and ability to 
generate fresh nominal values (cf. [3]). Currently the 
association is done manually, however, we are working on a 
``compiler'' for user stories (written in a constrained English 
parsable without natural language processing tools, cf. [4]). 

Creating the executable semantics we focused on capturing 
the basic (CRUD) operations on data and data flow between 
actors involved in the stories. The result bears similarity to 
specification of artifact-centric business process (see e.g., [5], 
[6]). Complex operations are abstracted away as uninterpreted 
terms (encoding data dependency). The semantics is detailed 
enough to perform reachability analysis to prove that desirable 
final states of a case are attainable through legal user actions, 
and undesirable data transformations and accesses are not. 

 When presenting the semantics, we decided to dispense 
with Petri Net pictures which would be too complex and less 
susceptible to piecewise introduction. Instead we use actual 
multiset rewriting rules. Note that such rules are directly 
translatable into rewriting language and system Maude [7] 
often used to express and test formal specifications (see e.g., 
[8], [9], [10] and also to simulate a variety of Petri Nets [11], 
[12]. 

II. FACTS AND MULTISET REWRITING 

A. Values 
All values we use are typed. Types can be divided into 

abstract and concrete ones. Concrete ones contain defined 
operations and relations (usually through equations). Abstract 
types may contain constructors, but no defined operators and 
relations. We allow matching (e.g., in rewrite rules) only on 
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fully reduced terms which may contain constants, variables and 
constructors but no defined operators. Thus, e.g., in case of 
natural numbers ℕ (a concrete type) we can match on 0, s(m), 
s(s(m)) or 3:=s(s(s(0))), where m: ℕ  is a variable, and   s: ℕ → 
ℕ and 0: → ℕ are natural numbers constructors (successor and 
zero, respectively), but we cannot match on m+n as “+” is a 
defined operator. 

 Abstract types are further divided into nominal ones (for 
which the only constructors are constants) and non-nominal 
ones (with non-constant constructors). Nominal types serve as 
identifiers of objects, and for each nominal type we can 
generate fresh values of this type. Non-nominal abstract types 
serve as representations of computed values where we want to 
keep the computation abstract.  

B. Facts 
Facts are instances of base predicates (one can think of 

them as rows in a database table, if each row stored also a table 
name). A fact P(a1,…, an) consists of a predicate name P and a 
list of values a1,…, an (fully reduced terms serving as predicate 
arguments). Non-ground facts may contain variables among (or 
inside) arguments ai. 

A predicate signature is a tuple of types. We write 
P:T1,…,Tn  if P is a predicate name with signature T1,…,Tn. In 
this case all facts P(a1,…, am) with P as predicate name are 
such that m=n and ai:Ti, i∈{1,…,n}.  

C. Multisets of facts 
 We represent state of the system as a multiset of ground 

facts. Changes to this state are represented by multiset rewrites. 
We assume usual multiset operations Γ∪Δ (union) Γ∩Δ 
(intersection), Γ-Δ (difference). ∅ is the empty multiset. 
When writing rules we often identify facts with single-element 
multisets and consider ``,'' (comma) to be an associative and 
commutative multiset constructor corresponding to multiset 
union. We denote by Var(Γ) the set of variables occurring in 
the multiset Γ. 

Multisets of facts, apart from representing state of the 
system may also appear as arguments of abstract aggregate 
functions. 

D. Domain conditions 
A domain condition is a quantifier free, first order formula 

which can refer to domain predicates (such as ordering on 
numbers) but not to base predicates stored in the multiset 
database. 

E. Rewrite rules 
A rewrite rule λ=(p, C, Γ, Δ, Δ’) consists of term p of type 

Person denoting agent of the action,   domain condition C and 
three (non-ground) multisets Γ, Δ, and Δ’ such that 
Var(C)∪Var(Γ)∪Var(p)⊆Var(Δ) and any x∈Var(Δ’)-Var(Δ) 
is of nominal type. 

We say that a ground multiset of facts Ψ rewrites  to a 
ground multiset Ψ’ with rule λ, agent a, and ground substitution 

σ (i.e., σ(x) is a ground term for all x∈Var(Δ’)∪Var(Δ), which 
we denote by Ψ→λ,σ,a  Ψ’, if and only if  

 σ(C) is true, 

 σ(p)=a, 

 σ(Γ)⊈Ψ and σ(Δ)⊆Ψ , 

 Ψ’= (Ψ-σ(Δ))∪σ(Δ’), 

 for all x∈Var(Δ’)-Var(Δ), σ(x) is fresh. 

Let Ψ0→λ0,σ0,a0Ψ1→λ1,σ1,a1….→λi,σi,aiΨi+1, where Ψ0 is some 
initial multiset of facts.  A value c of nominal type is fresh at 
i≥0 if it did not occur in Ψ0∪…∪Ψi-1. 

To improve readability we use an alternative syntax for 
rules. Namely, we write 

C;¬α,β;γ⇒pδ,

where ¬α=¬α1,…,¬αn, β=β1,…,βm, etc., and αi's, etc., are facts, 
to denote the rule 

(p, C, α, {β}∪{γ}, {β}∪{δ})

F. Rewrite systems 
A rewrite system R is a set of rewrite rules. We write  

Ψ→R,a  Ψ’ if there exists some λ∈R and a ground substitution σ 
such that  Ψ→λ,σ,a  Ψ’.  

III. FROM USER STORIES TO REWRITING SYSTEM 
In this section we show how to construct from a colection 

of user stories augmented with data model a multiset rewriting 
system. We will use as a running example an actual 
specification of a system supporting national selection of 
candidates for study programmes at the universities in New 
Guinea. Because of pecular conditions of life in New Guinea, 
candidates do not apply to a particular university. Instead, they 
submit their applications to the Department of Higher 
Education, Research, Science and Technology (DHERST). 
Higher education institutions (HEI) submit information about 
study programmes. Then, during national selection, candidates 
are matched with programmes and universities based on 
plethora of factors, which include student abilities, level of 
education and personal preferences. 

A. From entities to predicates 
As remarked above, our rewriting semantics does not 

attempt to capture all of requirements contained in user stories. 
Instead, it focues mostly on CRUD operations on data. Thus, 
we need to augment the user stories with data model of 
business entities referred to in the stories, perhaps partially 
extracted from stories themselves using techniques described in 
[1]. If entities are modeled using E/R technique, then the E/R 
model can be converted to definitions of predicates using usual 
techniques for transforming E/R model into relational schema. 
That is, key and obligatory single-valued attributes of an entity 
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or relationship become a arguments of a predicate with the 
same name as the entity/relationship, and nullable and many-
valued attributes give rise to separate predicates with the same 
name as the corresponding attribute. As an example consider 
the entities corresponding to HEI and the list of HEI: 

 entity HEI(id_T id, string name, string street, person 
chief), 

entity HEIList(id_T id, year year, id_T multival hei). 

In the second entity, the year attribute says for which year 
the list was composed. The first entitity gives rise to a single 
predicate 

HEI : id_T, string, string , person 

The second entity gives rise to two predicates, the second 
of which corresponds to the multivalued attribute hei 
containing identifiers of higher education institutions taking 
part in national selection: 

HEIList : id_T, year,          hei : id_T, id_T. 

Thus, hei(x,y) means that a higer education institution x 
belongs to the list y. 

B. User stories and rewriting rules 
Each user story gives rise to one or more rewriting rules. 

We assume that each story corresponds either to some CRUD 
operation (creation or update of entities) or to using data to 
compute or view something. The latter is abstracted as creation 
of special facts, e.g., of the form view(x, y), i.e., person x 
viewed entity with identifier y. 

C. Tokens 
Tokens are special facts. While the usual facts encode 

business relevant data, tokens encode information related to 
control flow. Names of tokens start with “#”. The basic token 
is argument-less and named #next. This token symbolizes the 
choice of the next story. If the user story is implemented with 
more than one rewriting rule, the story's “entry” rule replaces 
#next with story-specific token. The rule ending execution of a 
given story recreates the #next token. This token can be 
thought of as corresponding to the non-deterministic choice of 
an applicable story, and sometimes of value from the active 
domain. “Internal” tokens of the given story often have a 
natural argument corresponding to the maximal re-creation 
count to prevent infinite executions, as well as other arguments 
which store values which must be the same across all rewrites 
within execution of the same user story, such as the agent.  

D. Example rules 
Consider the following user story: 

As a DHERST admin I would like to create list of HEI if it 
doesn’t exist for the current year that would take part in 
National Selections. 

The italicized part above is an explanation for humans. 
What is important for our semantics is  the agency description 
“As a DHERST admin), and main verb “create” followed by 
object “list of HEI for the given year” and additional condition 
“if it doesn’t exist”. Thus, from the point of view of our 
semantics, the story describes creation of the new HEIList 

entity by a person assigned role of DHERST admin. The 
“current year being x” and “x having the role DHERST admin” 
is described by predicates with obvious names. The list is 
created empty (default interpretation of creation is that many-
valued and optional attributes are unassigned). Thus, the 
semantics of the above story is captured by the following single 
rule (x, y, z, p are variables): 

true; ¬HEIList(x, y), DHERSTAdmin(p), year(y) ; #next 
⇒p HEIList(z, y), #next. 

Above, z is a variable not bound by the left hand side of the 
rule, and thus it will be assigned a fresh identifier of the 
HEIList entity when this rule is executed. Note that the rule 
consumes the #next token but then it recreates it. Let us now 
consider the example of a story which compiles into multiple 
rules:  

As a DHERST admin I want to update list of HEI for the 
current year. 

Here the main verb is “update”. In this context it means 
deleting some HEI from the list and adding new ones. We 
assume that the information about a given higher education 
institution already exists in the system, so “adding a new one” 
means picking the HEI entity and adding it to the list. We 
utilize additional token predicate #upd : ℕ, Person, id_T. The 
token #upd(n, p, l) stores an agent (with role DHERST admin) 
who is the subject of this story, and the identifier l of the list of 
HEI which is being updated, so that all the rules update the 
same list. The number in the first argument limits the number 
of possible recreations of the token so that a given user story 
execution makes a limited number of elementary update 
operations and we avoid infinite loops when simulating. The 
first rule simply picks up the agent and the list to be updated 
and stores them in the token: 

true;  DHERSTAdmin(p), HEIList(x,y); #next 
 ⇒p #upd(N, p, x). 

In the above rule, p, x, y are variables, however N is not a 
variable but some fixed number describing a maximal number 
of recreations of the #upd token. Observe that the #next token 
is not recreated. This ensures rewritings corresponding to 
different user stories cannot occur until this story is finished. 

The next two rules add an existing HEI to the list (if it is 
not there already, or deletes some HEI from the list. Note that 
both rules require the #upd token with first argument greater 
than 0 (which is ensured by matching with s(0)) and that both 
rules recreate the #upd token with first argument decreased by 
1: 

true; ¬hei(h, x), HEI(h, n, a, c); #upd(s(m), p, x)  
⇒p hei(h, x), #upd(m, p, x). 

true; ; hei(h, x), #upd(s(m), p, x) ⇒p #upd(m, p, x). 

Note that instead of matching against s(m) we could have 
instead use the condition part of the rule, e.g.,  

m > 0; ; hei(h, x), #upd(m, p, x) ⇒p #upd(m-1, p, x). 
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The last rule serves to non-deterministically finish 
execution of the present story by recreation of the #next token. 
Observe that because we do not limit variable m, the story ends 
after no more, but possibly less then N elementary update 
steps, where N was the first argument of the #upd token created 
in the first rewrite rule: 

true;;#upd(m,p,x) ⇒p #next. 

In the last example of converting user story to rewrite rules 
we show how to abstract non-trivial computation. The story we 
want to implement is as follows: 

As a DHERST admin I can run Gale Shapley algorithm to 
find best matching of available candidates and programs. 

Clearly, we do not want to model or specify Gale Shapley 
algorithm, as it is out of the scope of our executable semantics. 
However, we can model the associated data flow. To make the 
presentation more readable in the small space available, we 
simplify significantly the data model. Namely, we suppose that 
we have the following two two-argument predicates: 

Cand : Cand_T,       Prog : Prog_T. 

We assume that elements of types Cand_T and Prog_T 
store all the data about candidates and study programmes, 
respectively. We also assume that we have constructor ga-sh :  
FactMultiset → Matching,  and a predicate match : Matching,  
where Matching is the abstract type corresponding to the 
results of Gale-Shapley algorithm, and FactMultiset is a type of 
multisets of facts used when defining abstract aggregate 
functions such as ga-sh. The story is implemented with the 
following four rules: 

true; DHERSTAdmin(p); #next  
⇒p #dh(p), match(ga-sh(∅)) 

true; ; #dh(p), Cand(c), match(ga-sh(S))  
⇒p #dh(p), match(ga-sh(S ∪ { Cand(c) })), 

true; ; #dh(p), Prog(c), match(ga-sh(S))  
⇒p #dh(p), match(ga-sh(S ∪ { Prog(c) })), 

true; ¬ Cand(c), ¬ Prog(c’), match(ga-sh(S)) ; #dh(p)  
⇒p #next, S 

The first one picks DHERST admin and stores the choice in 
a token, as well as creates an empty matching term. The next 
two  gather candidates and study programs, the last one 
finishes story execution when all candidates and programs have 

been aggregated. Note that it recreates facts about candidates 
and programs temporarily removed from the multiset database. 

 

CONCLUSION 
We outlined how to assign an executable semantics to a 

collection of user stories. Executable semantics we describe is 
based on multiset term rewriting, and it tries to capture the 
basic CRUD operations. Currently the assignement is done 
manually, but we are working on a user story compiler. 
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