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Abstract—The paper considers the main implementations of
cryptosystems in groups and an analysis of the estimation of
complexity of calculations. The analysis of the cryptosystems
implementation based on Suzuki group is presented. The design
and implementation peculiarities of the Suzuki 2-group based
MST3 cryptosystem are analyzed. The comparative results of
encryption and decryption computation costs for the finite field
of 128 bits, 256 bits, as well as implementation for the RSA
algorithm are obtained. It follows from the evaluation that, for
example, the encryption and decryption time of the RSA
algorithm is 10 times bigger than the MST3 cryptosystem, but it
much more cost effective in terms of the size of private and
public keys.

Anomayias—B poGoTi Ppo3risAIaOTHCSI OCHOBHI peaJti3amii
KPUITOCHCTEM Yy Tpymax Ta aHadi3 OWiHKH CKJAJHOCTI

PO3paxyHKiB. Ipencrasiennii aHaJi3 BIIPOBA/I’KEHH S
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kpunrocucrem Ha rpyni Suzuki. IlpoananizoBano ocodauBocTi
po3podku Ta peasnizauii kpunrocuctemu MST3 nHa 6a3i 2-x rpyn
Suzuki. Otpumani mnNOpiBHAJBHI pe3yJabTaTH PO3PAXyHKY
muppyBaHHs Ta JeummdpyBaHHs 11s KiHuesoro nojs 128 6ir,
256 Oit, a Takoxk peayizauin aaropurmy RSA. 3 ouinkn
1o, Hampukjaaa, vac  mupyBaHHa  Ta
nemmgpyBanas  ajaroputmy RSA B 10 pasie  nepeBuurye
xpunrocucremy MST3, aje HabGaraTto OiiblI eKOHOMiIYHO
e(eKTHBHMII 3 TOYKH 30py Po3Mipy MPHBATHHUX Ta BiIKPHTHX

BUILIUBAE,

KJIWYiB. (QYHKIIOHYBaHHSI CHCTEM €JEKTPOHHOI B3aeMOMil
opraHiB BUKOHABYOI BJIAIH.
Keywords—Suzuki  2-group, logarithmic  signature,

Computational, MST;
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I

In the early 80's, the use of group theoretical problems
for cryptography was proposed by Wagner and Magyarik [1],
Wagner [2], Magliveras [3]. Magliveras et al were made the
proposals for cryptographic schemes based on special
expanded finite groups (so-called logarithmic signatures) [3].
Logariphmic signatures and their cryptographic application
were studied by Gonzaglez Vasco, Steinwandt, Birget, Bohliet,
and others authors. These decompositions are interesting by
themselves like mathematical objects. For example, Hajors
work on Minkowski's hypothesis shows that this type of
decomposition for abelian groups arises in the study of
multidimensional coverings (see [4]).

INTRODUCTION

MST,, MST, and MST, are examples of public key

cryptosystems. The construction of short logarithmic signatures
is the actual issue of their implementation. Logarithmic
signatures are the special type of group decomposition are
presented as the main components of some cryptographic keys.
In this connection, scientific interest corresponds to the search
of the logarithmic signatures in the finite groups (such
decompositions exist for solvable, symmetric and alternate
groups) and assessment of their practical feasibility and
secrecy. The basic definitions of logarithmic signatures,
coverings for finite groups and their mapping generations, as
well as the structure of the given cryptosystems are presented
in [4].

II.  DESING AND IMPLEMENTATION PECULIARITIES OF MST;

CRYPTOSYSTEM ON SUZUKI 2-GROUP

Suzuki 2-group with order of q2 is proposed in the
generic implementation of A/ST, cryptosystem. Using the

notation of Higman [5], Suzuki 2-group with order of q2 is
noted as A(m, 0) Let g = 2" 3 3<meN is such,

that F q field has nontrivial automorphism 0 of unpaired

order. Here it means that 777 is not degree of 2. Than groups
of A(m, 0) are exist.

In fact, if we determine ¢ := {S(a,b) | a,bqu},

1 0 O
where S(a,b) =laga 1 0 Iisthe matrix 3% 3 over
b a’ 1
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the field F 7 it shows that group & is isomorphic to
A(m,0). So, G has the order of q2 and we have
Z=Z(5)=0()=¢"=Q,(5)={S(0,b)|pF,}
Since the center Z(g ) is an elementary Abelian group of
the order {, it can be identified with the additive group of

field Fq. Besides, factor-group & / Cp(g ) is elementary
Abelian group of order (. Then it's easy to check that the

multiplication of the two elements in & is carried out in

accordance with the rule
S(a,,b)S(a,,b,)=S(a, +a,,b +b, +a’a,).
Finding the inverse element is performed by the formula
S(a,b)”" =S(a,b+a"").

The algorithm of the system for encryption has the following
stages [6].
A. Generate of the key data

1. Choose the big group G = A(m,0), g =2".

2. Generate  factorizable logarithmic  signature
B=[BsB1=(b,,) = (S(0,b, b)) of (7,....7;) type,
where b, .beF,.

3. Generate random covering

a=[4,..,A]=(a, ;) =(S(a,,a,a, D))

B.

of  the type of where

a,;.ack, /{0},a ,.beF,.

same

4. Generate random values ly,t,...,1, € G, matrix of

random bits 0 =[g x ¢q].

5. Construct homomorphism f:G—Z, defined as
f(5(a,0))=5(0,g(a)) this the

multiplication by a random bit matrix f'(a) = a° was used).

(in implementation,

6. Compute
y =[H,,... H,1=(h, ) = (S(h, .a,h, b)),

where hi,j = tiill * 4 T bi,j * f(ai,j)‘



private  key

7. Public [a,7],
[B,(%y,t,,-..,t,), /] and additional data which is needed for

key -

the factorization of [3.

B. Encryption of the message m
1. Generate element ¥ = S(0,m) e G
2. Generate random number R € Z
3. Compute the cryptogram

n=adR)*y, y,=y'(R)*x.

Remark
To reduce the size of cipher text enough to save

(yl‘a,yl‘b,yz.b), when decrypting the component y, ,

C. Decryption

1. Compute

PR =Fn) " 07 1, * v, '
2. Factorize R = "' (R).
3. Compute c'(R).

4. Restore m =y, , ®a'(R),.

can be restored by the formula , , =¥, , D, D,

Encryption testing is performed on a computer running OS
Ubuntu 16.04 with Intel® Core™ i7-4702MQ CPU @2,20
GHz processor, 12 Gb RAM. The results are presented in

Tables 1,2.
TABLE L ENCRYPTION AND DECRYPTION COMPUTATIONAL COSTS IN THE 128BITS FINITE FIELD
Partition classes Time of the key data Private key size, Public key size, Encryption time for 100 Decryption time for 100
generation, ms bytes bytes KB, ms KB, ms
12812] —64[4] 56 78830 39761 4749 2711
64[4] —32[16] 59 111726 75217 2388 1487
32[16] —16[256] 169 671918 590609 1205 888

ENCRYPTION AND DECRYPTION COMPUTATIONAL COSTS IN THE 256BITS FINITE FIELD

TABLE II.
Partition classes Time of the key data Private key size, Public key size, Encryption time for 100 Decryption time for 100
generation, ms bytes bytes KB, ms KB, ms
256[2] —128[4] 57 249630 128593 14811 7911
1284]— 64[16] 106 361502 248657 7540 4196
64[16] —32[256] 798 2193054 1967569 3782 2318

In the Table. III a comparison with RSA encryption algorithm is presented.

ENCRYPTION AND DECRYPTION COMPUTATIONAL COSTS FOR RSA

TABLE III.
Bitness of key parameters, Time of the key data Private key Public key size, Encryption time for 100 Decryption time for 100
bit generation, ms size, bytes bytes KB, ms KB, ms
512 3,368 342 92 66,987 641,277
1024 8,685 632 160 117,947 2116,400
2048 63,658 1214 292 243,887 9853,580
4096 707,645 2373 548 591,868 64250,400
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CONCLUSIONS

1. Tt is necessary to select a partition class of the
logarithmic  sub-block into blocks to optimize the
computational costs for the size of private and public keys, the
time for encryption and decryption. Time costs can be reduced
by several times. The use of the final field of 128, 256 bits is
sufficient to provide the highest class of security in the
cryptosystems’ classification.

2. During the calculation of 2048 and 4096 bits in the finite
field, the encryption and decryption time of the RSA algorithm
is tens of times larger than the AMST, cryptosystem, but it

ensures significant cost savings for the size of private and
public keys.
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