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Анотація—У роботі розглядаються алгоритми 

чисельного обчислення інтегралів, що виникають при 
дискретизації дробового за часовою змінною рівняння 
дифузії з узагальненою похідною Капуто. Пропонуються 
схеми, основані на розкладі підінтегральної функції у ряди 
Тейлора, що дозволяють пришвидшити обчислення 
інтегралів порівняно зі схемою рекурсивного підрозбиття. 
Наводяться результати тестування швидкодії алгоритмів. 

Abstract—The algorithms of numerical computation of 
integrals that arise during the discretization of time-fractional 
diffusion equation with a generalized Caputo derivative are 
considered in the paper. We propose several algorithms based on 
the expansion of the integrand in the Taylor series which allow 
accelerating the computation of integrals in comparison with the 
recursive subdivision scheme. The results of the proposed 
algorithms performance testing are presented. 
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I.  INTRODUCTION  
Correct mathematical modelling of non-equilibrium 

diffusion processes requires the use of non-classical differential 
models, particularly the models with fractional derivatives 
[1,2]. In the case of media with memory effect, mass transfer is 
efficiently modelled by introduction of fractional derivative 
with respect to time variable into the diffusion equation [3,4]. 

Numerical modelling on the base of such models has higher 
computational complexity comparing with classical models 
[5,6]. Generalization of the derivative leads to even higher 
complexity and makes urgent the development of new 
numerical algorithms. 

The paper deals with numerical modelling of anomalous 
diffusion using one-dimensional model with generalized 
Caputo fractional derivative [7] with respect to time variable. 
Considering the influence of the time spent on computation of 
integrals arising after discretization of the fractional derivative 
on the total computation time we propose several specific 
numerical schemes that lower it. 

II. PROBLEM STATEMENT AND FINITE DIFFERENCE SCHEME 
We consider the following one-dimensional time-fractional 

diffusion equation built on the base of the one described in [8]: 

( )
,

( , )( , ) ( ( , ) )t g
C x tD C x t d x t

z z
  


   [0, ], 0x L t   1   

where ( , )C x t  is the diffusive substance concentration,   is 
the porosity of the medium, ( , )d x t  is the diffusion coefficient, 

( )
,t gD 

 is the generalized Caputo fractional derivative with 
respect to time variable t  that has the following form:  
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For the equation (1) we pose the following initial and 
boundary conditions: 
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Considering uniform grid domain  
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first order finite difference approximation 
( )
,t g
  of the operator 
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,t gD 

 can be defined [7] as 
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Discretizing the equation (1) on the grid (2) using (3) we 
obtain the following three-diagonal linear equations system 
(values of 1

0
jC   and 1j

mC   are obtained from the boundary 
conditions): 
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System (4) can be solved by the sweep method [9]. 

III. NUMERICAL INTEGRATION ALGORITHMS 
Determination of the values of system (4) coefficients 

needs performing calculation of the integrals ( )j
sb . These 

integrals are improper when 1s j   and special 
approximation methods should be used for their evaluation. 

We propose to use the following recursive subdivision 
algorithm for this purpose: 

1) The current integration interval [ , ]l uI I I  is set equal 
to 1[ , ]s sI t t  ; 

2) Integral over the current integration interval is 
calculated using the trapezoidal rule; 

3) The interval is then split into two parts: 

1
1[ , ( )]
2l l uI I I I 

 and 
2

1[ ( ), ]
2 l u uI I I I 

. The value 
of the integral over the interval [ , ]l uI I I  is calculated 
as a sum of integrals over the intervals 1 2,I I , that are, 
in turn, evaluated using the trapezoidal rule; 

4) When the difference between the approximations of the 
integral’s value obtained on steps 2 and 3 is greater than 
a given 1 , the procedure is recursively repeated for the 

intervals 1 2,I I . 

When 1s j   and the integral has to be computed over 
the interval 3 1 2 1[ , ]s sI t t    where 2  is a given constant, 
we propose to use the following algorithm: 

1) The initial step is set equal to 2 /s N  where N  is a 
given number; the initial value of the lower bound of 

integration interval is set equal to 1 2l st t   .  

2) The value of the integral over [ , ]l lt t s  is calculated by 
a 4-th order quadrature formula; 

3) When ( / 2) / ( ) ( ) / ( / 2)l l l lF t s F t F t s F t s     
where F  is an integrand, we decrease the step s  by 

2( ) ( ) / ( / 2)l l lF t s F t F t s  . This makes the integrand 
to be close to a linear function within the interval 
[ , ]l lt t s ; 

4) The step is halved when 1l st s t   ; 

5) When 1 3( )s lt t     where 3  is a given constant, we 
shift to the next interval by setting l lt t s  . 

Number of evaluations upon the above-described algorithm 
that must be performed increases with an increase of time step 
number. Since it is difficult to construct optimized or recurrent 
procedures for this algorithm, the construction of other 
numerical schemes is urgent in order to reduce the time spent 
on computing the integrals ( )j

sb . 

Assuming there exists an infinitely differentiated function 
( ) : ( ( ))f f g   , the integral ( )j

sb  can be expanded in series 
in two following ways. 

After doing in ( )j
sb  a change of variables in the form of 

( ) ( ) ( ( ) )j jx g t g f g t x       we obtain 

1

1

( ) ( )
( )

( ) ( )

( ( ) ( )) '( ( ) ) .
j ss

s j s

g t g tt
j

s j j
t g t g t

b g t g d f g t x x dx  





 



    


Expanding '( )f x  in the Taylor series at ( )jx g t  we have 
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Another scheme of ( )j
sb  evaluation can be obtained doing a 

change of variables in the form of ( ) ( )x g f x     
having  
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Expanding ( ( ) )jg t x   using the generalized Newton 
binomial series and expanding '( )f x  in the Taylor series at 

1( )sx g t   we have 
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The value of the integral 1B  can be calculated using the 
following recursion: 
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The main feature of the scheme (6) is that the values of the 
coefficients nS  once calculated for the fixed st  and 1st   can be 
cached and further used when jt  changes. 

Computational experiments performed in the case of 
2( )g   , 1/ 2( )f   , 1/ 21'( ) ,

2
f     

( 1) ( )1/ 2( ) ( )n nnf f 


 
  showed that the convergence of the 

series (5) worsens when 0st   while the convergence of the 
series (6) worsens when 1s jt t  . To ensure the highest 
performance we propose the following algorithm of automatic 
selection of series (5) or (6) for the approximation of the 
integrals ( )j

sb  depending on the values of their parameters: 

1) Let the values of the integrals 
( )j
sb  are calculated 

sequentially for , 0,1, ...jt j   and , 0,..., 1st s j  ; 

2) 2a  ; 

3) When s at t , the scheme (6) is used for numerical 
integration; 

4) When s at t  we perform a correction of the value of 
the parameter a . If the number of iterations needed to 
approximate the integral with a given accuracy using 
the scheme (5) is greater that the corresponding number 
of iterations for the scheme (6), the value of the 
parameter must be increased: 1a a  . Otherwise, if 

1a   the value must be set to 1a a  ; 

5) When s at t , the scheme (5) is used for numerical 
integration. 

IV. NUMERICAL EXPERIMENTS 
The efficiency of the proposed algorithms was tested 

solving the initial-boundary problem for the equation (1) with 
3, 1, 1L d    , 0.6, 0.1   . The obtained solutions 

are presented for 5T   on Fig. 1. 

 
Fig. 1.  Solutions of the initial-boundary problem for the equation (1) (1 - 

1  , 2 - 0.8, ( )g    , 3 - 
20.6, ( )g    , 4 - 

0.6, ( )g    , 5 - 
1/ 20.8, ( )g    ) 

Total time (ms) spent during the solution of the problem on 
the calculations of ( )j

sb  for 2( )g    depending on the 
number of time step is given on Fig.2.  

As can be seen from the experimental data, the algorithm 
for automatic selection of series (5) or (6) allows accelerating 
the calculation, whereas the use of these series separately due 
to the peculiarities of their convergence slows down the 
solution process. 
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Fig. 2. Time spent to compute the value of 
( )j
sb  depending on the number of 

time step (1 – the recursive subdivision algorithm, 2 – the series (5), 3 – 
the series (6), 4 – the algorithm of automatic series selection) 

Computational experiments showed that the efficiency of 
the algorithm of automatic series selection decreases with the 
increase of time step number. At the same time, it increases 
with the decrease of the fractional derivative order   or the 
increase of time step length. 

The per cent of the time spent on the calculations of ( )j
sb  in 

the total time depending on the number of time step is shown 
on Fig.3. The obtained data show that the influence of the time 
spent on computing ( )j

sb  on the total time decreases with the 
increase of the number of time step. 

 

Fig. 3.  Per cent of the time spent on the calculations of 
( )j
sb  in the total 

time depending on the number of time step (1 – the recursive 
subdivision algorithm, 2 – the series (5), 3 – the series (6), 4 – the 
algorithm of automatic series selection) 

CONCLUSIONS 
Improper integrals that arise in discretization of generalized 

Caputo derivative have to be numerically calculated during 
modelling of anomalous diffusion on the base of the considered 
model. As recursive subdivision quadrature formulae that can 
be used in this case are rather slow, we propose specific 
computation schemes that can speed-up computations. 

The performed computational experiments show that the 
use of the schemes based of Taylor series expansions of the 
integrals ( )j

sb  can achieve up to 2.5 times speed-up solving the 
considered problem of diffusion process simulation. The speed-
up lowers here while modelling the processes on large time 
intervals; become higher for lower values of time step or higher 
values of fractional derivative order. 

As the proposed algorithms are optimized for the case of 
sequential changes of the parameters of the integrals ( )j

sb , 
further research can be performed to apply them for solving 
space-fractional differential equation with generalized Caputo 
derivatives. 
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