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Anomayin—Y  po6oTi  PO3CIAAAIOTHCH aaropurmu  Numerical modelling on the base of such models has higher
YUCEJBHOT0 O0YMC/IeHHs iHTerpaiis, 10 BHHHKAKTL npu  computational complexity comparing with classical models
AMCKpeTH3alii Apo0oBOro 3a 4YacoBOI 3MiHHOI PiBHAHHS [5,6]. Generalization of the derivative leads to even higher
mugysii 3 ysaraabuenoro noxignoro Kanyro. IIpomomyiorsess  complexity and makes urgent the development of new
CXeMH, OCHOBaHI Ha PO3KJIaJi MigiHTerpaabHoi QyHKUii y psaau numerical algorithms.

Teigopa, 1m0 J03BOIAITH MNPHIIBHAIIATH  O0YMCJICHHS

iHTerpasiB MOPIiBHSIHO 3i CXEMOI PEKYPCHBHOIO MifPO3GHTTS. The paper deals with numerical modelling of anomalous

HagoasiThest pe3y/ibTATH TECTYBAHHS IBUIKOALI AJrOpUTMIB. diffusion using one-dimensional model with generalized
Caputo fractional derivative [7] with respect to time variable.

Abstract—The algorithms of numerical computation of  Considering the influence of the time spent on computation of
integrals that arise during the discretization of time-fractional integrals arising after discretization of the fractional derivative
diffusion equation with a generalized Caputo derivative are on the total computation time we propose several specific
considered in the paper. We propose several algorithms based on numerical schemes that lower it.
the expansion of the integrand in the Taylor series which allow
accelerating the computation of integrals in comparison with the II. PROBLEM STATEMENT AND FINITE DIFFERENCE SCHEME
recursive subdivision scheme. The results of the proposed

algorithms performance testing are presented. We consider the following one-dimensional time-fractional

diffusion equation built on the base of the one described in [8]:
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L. INTRODUCTION where C(x.7) is the diffusive substance concentration, O is

Correct mathematical modelling of non-equilibrium the porosity of the medium, d(x,1) is the diffusion coefficient,

diffusion processes requires the use of non-classical differential D,(ﬁ,) is the generalized Caputo fractional derivative with
models, particularly the models with fractional derivatives
[1,2]. In the case of media with memory effect, mass transfer is
efficiently modelled by introduction of fractional derivative
with respect to time variable into the diffusion equation [3,4].

respect to time variable ? that has the following form:
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1 j@H(x,t)

DPH(x,t) =
e 1001) ra-py, ot

(g()-g(r)"dr
For the equation (1) we pose the following initial and

boundary conditions:

aC(x,t)
cO,)=1 ox

w C(x0=0

Considering uniform grid domain

= Lt):x. =iht = jr,i=0,...,m, j=0,1,..
0={ (1,3 =iht, = jr,i=0,.om, ] .
first order finite difference approximation Afi,) of the operator
Dt(fg) can be defined [7] as

AP C = 1 ibf_/’) ct-c

“T U TA-p) S z,

o
b = [(g(t)-g(@) " dr
‘ A3)
Discretizing the equation (1) on the grid (2) using (3) we
obtain the following three-diagonal linear equations system

(values of C/" and C,' are obtained from the boundary
conditions):

AH -RIH B =0 (= 1m=1,j=0.1.)
where
/)
A/ =£ B’ =i le _ di—l +d,» + O'b].
i hz i hz h2 Tr(l_ﬂ)
- ob? o
z/ =— J C/ + o Zb;;l) (Cs+l _CS).
a'(1-p5) T(1-8) =

System (4) can be solved by the sweep method [9].

III. NUMERICAL INTEGRATION ALGORITHMS
Determination of the values of system (4) coefficients
needs performing calculation of the integrals b” . These

integrals are improper when S =Jj=1  and special

approximation methods should be used for their evaluation.
We propose to use the following recursive subdivision
algorithm for this purpose:

1) The current integration interval r=U,1,] is set equal
to I =[ts’ts+l];
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2) Integral over the current integration interval is

calculated using the trapezoidal rule;

3) The interval 1is then split into two parts:

1 1
[l = [11’5(11 +[ll )] [2 = [5([1 +[u)’ [u]

an . The value
. . I=[1,1].
of the integral over the interval I>7ud is calculated

as a sum of integrals over the intervals L, 12, that are,
in turn, evaluated using the trapezoidal rule;

4) When the difference between the approximations of the
integral’s value obtained on steps 2 and 3 is greater than

a given &1 the procedure is recursively repeated for the

intervals 1, 1, .

When 5=/~ and the integral has to be computed over

the interval 13 =[f.1 = &%, ] where € is a given constant,
we propose to use the following algorithm:

1) The initial step is set equal to * = & /N where NV isa
given number; the initial value of the lower bound of
integration interval is set equal to h=ln=8,

2) The value of the integral over UR

a 4-th order quadrature formula;

F(t,+s12)/ F(t,) < F(t, +5)/ F(t, +5/2)

] is calculated by

3) When
where £ is an integrand, we decrease the step § by
F, +)F )/ F* (1, +5/2) . This makes the integrand
to be close to a linear function within the interval
[¢,,t, +5].

4) The step is halved when i4s >l ;

t.,—t)<e &, - .
i Th) <& where “3 is a given constant, we

t, <t +s

5) When (
shift to the next interval by setting
Number of evaluations upon the above-described algorithm
that must be performed increases with an increase of time step
number. Since it is difficult to construct optimized or recurrent

procedures for this algorithm, the construction of other
numerical schemes is urgent in order to reduce the time spent

on computing the integrals 5" .
Assuming there exists an infinitely differentiated function

f(@): f(g@) =7 the integral b can be expanded in series
in two following ways.

After doing in b a change of variables in the form of
x=g(t)—g(r) = 7= f(g(t,)—X) we obtain
2l)=g(t,)

| rie)-ox"ax

8(1)=g(t)

b0 = [ (g(t) - g(@) " dr =

Expanding ./ '(*) in the Taylor series at X = &(¢;) we have



0

b{.f) — Z

n=0

{(—1)

oS
- ;{(_l) nl(n—pg+1)

n (t;)-g ()
" (g (@) .
n ' J xr/ ﬁdx —

g(t;)-g(tg)
[(g(r_,.)—g(rs))”‘ﬁ“ D
(5)

~(g(t)~g(t,.,)"""
Another scheme of b evaluation can be obtained doing a
change of variables in the form of X =g(n)=>1=/f(%)
having

&(t1)
[ rieoee)—x)"dx.

&(t)

b0 = [ (g(t)) - g(e) " d =

Expanding (€(t,)=X)" using the generalized Newton

binomial series and expanding S'(X¥) in the Taylor series at

x=g(t.,) we have
o)

n
= £ (eg(t,)
S, (t,t.,) = MZ_O{BM T}

g(ty)
[ x"Ce—g(t,.)"dx.

&)

0

bV = Z

n=0

B

m

(6)

The value of the integral B, can be calculated using the
following recursion:

&(ty)

n 1 n+ n+
[ e =— (et -2,
n+l

g(ty)

The main feature of the scheme (6) is that the values of the

B, =

n+i+2
gt )i+1)

_g(t)" (gt) gt )"
gt +1)

i+l

coefficients S, once calculated for the fixed  and % can be
cached and further used when /; changes.

Computational experiments performed in the case of

g0 =7 f@=2" f@=5"

n+ 1/ 2 - n n
S0 = Tf “(7) showed that the convergence of the
series (5) worsens when %, = 0 while the convergence of the

series (6) worsens when .1 ;. To ensure the highest
performance we propose the following algorithm of automatic
selection of series (5) or (6) for the approximation of the

integrals b depending on the values of their parameters:

252

)]

1) Let the values of the integrals s are calculated

sequentially for /7 = OLws ond for 8= 00 1 ;

2) a< 2 :

3) When ls Stu, the scheme (6) is used for numerical
integration;

4) When =t we perform a correction of the value of

the parameter ¢ . If the number of iterations needed to
approximate the integral with a given accuracy using
the scheme (5) is greater that the corresponding number
of iterations for the scheme (6), the value of the
parameter must be increased: @ <~ @+1_ Otherwise, if

a#1 the value must be set to @ <~ a—1;

When % >tu, the scheme (5) is used for numerical
integration.

5)

IV. NUMERICAL EXPERIMENTS

The efficiency of the proposed algorithms was tested
solving the initial-boundary problem for the equation (1) with
L=3d=10=1 , B=0.6,7=0.1 The gbtained solutions
are presented for 7 =5 on Fig. 1.

~
~
-
~
______
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Fig. 1. Solutions of the initial-boundary problem for the equation (1) (1 -
B=1, B=08 g(r)=c , B=06g(1)=1" ,

B=06¢g(@)=7 ; p=08 g()=1"

Total time (ms) spent during the solution of the problem on

the calculations of b for g)=7’ depending on the
number of time step is given on Fig.2.

As can be seen from the experimental data, the algorithm
for automatic selection of series (5) or (6) allows accelerating
the calculation, whereas the use of these series separately due
to the peculiarities of their convergence slows down the
solution process.
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Fig. 2. Time spent to compute the value of *  depending on the number of
time step (1 — the recursive subdivision algorithm, 2 — the series (5), 3 —
the series (6), 4 — the algorithm of automatic series selection)

Computational experiments showed that the efficiency of
the algorithm of automatic series selection decreases with the
increase of time step number. At the same time, it increases

with the decrease of the fractional derivative order B or the
increase of time step length.

The per cent of the time spent on the calculations of b in
the total time depending on the number of time step is shown
on Fig.3. The obtained data show that the influence of the time

spent on computing b” on the total time decreases with the
increase of the number of time step.
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Fig. 3. Per cent of the time spent on the calculations of b, in the total
time depending on the number of time step (1 — the recursive
subdivision algorithm, 2 — the series (5), 3 — the series (6), 4 — the
algorithm of automatic series selection)
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CONCLUSIONS

Improper integrals that arise in discretization of generalized
Caputo derivative have to be numerically calculated during
modelling of anomalous diffusion on the base of the considered
model. As recursive subdivision quadrature formulae that can
be used in this case are rather slow, we propose specific
computation schemes that can speed-up computations.

The performed computational experiments show that the
use of the schemes based of Taylor series expansions of the

integrals b” can achieve up to 2.5 times speed-up solving the
considered problem of diffusion process simulation. The speed-
up lowers here while modelling the processes on large time
intervals; become higher for lower values of time step or higher
values of fractional derivative order.

As the proposed algorithms are optimized for the case of

sequential changes of the parameters of the integrals bi"),
further research can be performed to apply them for solving
space-fractional differential equation with generalized Caputo
derivatives.
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