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Abstract—The mathematical model of mass transfer processes
with taken into consideration of a local medium structure and
cascade decay of admixture particles migrating in two ways is
constructed. For the specific scheme of cascade, the balance
relations of mass of the system components are formulated, the
linear state equations and kinetic relationships are obtained. The
heterodiffusion processes of admixture with its cascade decay in a
body with two migration ways, accompanied by mass exchange
between states, are investigated. For the case of unramified cascade
decay, associated initial-boundary value heterodiffusion problems
by cascade kind, when the problem solutions at one stage are
sources on the next, are formulated. Solutions of the problems are
obtained by iterative procedure with using Green functions. The
expressions for diffusion fluxes of migrating admixture substances
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through the given section of the body and amount of decaying
substances that passed through the layer in a certain time interval.

Anomauyia—IloGynoBana MaTeMaTH4YHa MOJETL MpoNeECiB Ma-
conepeHeceHHs! JOMIIIKOBUX Pe4OBHH 3 YPaXyBaHHSIM JIOKAJIbHOI
CTPYKTYPH CePeIOBHIIA TA KACKATHOI0 PO3NAAy JOMIIIKOBHUX Yac-
THHOK, sIKi MIrpyloTh ABoMa nuigxaMu. /Ui KOHKpPeTHOI cxeMH
KACKAJHOro po3nany cgpopMyJboBaHO 0aJaHCOBI CHiBBIiIHOLICHHS
MAacH KOMIIOHEHT CHCTEMH, OTPMMAHO JIiHiifHi PIBHAHHA CTaHy Ta
KiHeTH4Hi cniBBiTHOMIEHHA. [locimimxeno npouecn rerepoaudysii
JAOMIIIOK 32 iX KaCKa/JIHOI'0 PO3Majgy B TiJi 3 JBOMA NLIAXaMH Mir-
pauii, 10 CyIPOBOIKYIOThCSI MaCOOOMiHOM Mixk craHamu. /s BU-
MKy HepOo3rajdy:KeHOro KAacKaJHoOro posmaay cgopmy/boBaHi
3B’s13aHi KpaiioBi 3ama4i rerepoaudysii KaCKagHOro THIy, KOJIH
PO3B’AI3KH 3a7a4i HA OJJHOMY eTami € JyKepeJIaMH HA HACTYITHOMY.



Po3p’si3ku 3a7a4 moOynoBaHi 3a iTepaniiiHOI0 MpoLEaypPoOIO 3 BH-
KopuctanusiM pynkuiii I'pina. Orpumano dopmym mas audy-
3iHAX MOTOKIB MIirpyl04nx JOMIIIKOBHX PEYOBHH Yepe3 3aJaHHii
nepepis Tija Ta KiJIbKOCTI PO3NaJHAX PEeYOBHH, 10 NMPOHILIH Ye-
pe3 map, 3a NeBHUIi YacoBHii iHTEpBaJL.
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Mathematical models of admixture heterodiffusion in two
ways in media where migrating particles occur locally in dif-
ferent physical states and differ substantially by their mobilities
[1-3], are used for describing the processes of mass transfer in
polycrystals, fine-grained systems of different nature, porous
fluid-saturated media, ets. For example, a significant numbers
of metals and allows used in engineering are polycrystals.
Their structures are characterized by availability of
dislocations, grain boundaries and internal boundaries of
interphases [4].

INTRODUCTION

An important feature of the processes of heterodiffusion of
technogenic substances is their natural decay (degradation),
which occur with the same intensity in each of physically
different states. In some cases, the substance generated in the
process of decay is already less toxic and its redistribution is
not of interest for further study. At the same time the generated
substance can decay and generate new substance which
migrates in two ways, is sorbed-desorbed and decay. Such a
process is called cascade decay and can occur as a result of
radioactive decay or chemical reactions (in particular, chain
reactions), for example [5]:

137Te 1371 137Xe 137CS 138CS 138Ba

In the work the mathematical model of heterodiffusion of
admixture particles in two ways under their cascade decay is
constructed, associated initial-boundary value heterodiffusion
problems by cascade kind, when the problem solutions at one
stage are sources on the next, are formulated. The solutions of
the problems are found and on this basis software is designed.

II. MATHEMATICAL MODEL

A. Object of inquiry

Let decaying particles of one chemical kind migrate in a
body with two migration ways and mass exchange between
states [1, 3, 6, 7]. Moreover, the substances that formed as a

result of decay can also decay. We accept that the body K"
(discrete set of material particles) is a multicomponent solid
solution. We assume interacting discrete sets of material par-

ticles Kj«(o) that form the base of the body ( j = 0) and admix-
ture particles in two dedicated states ( j =1;2 ) as thermodyna-

mical components of the system. When the substance Kj«(o) in

the state j=1;2 decays, the particles of other substances K’;«(l)
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and Kj(N ) are formed, and the particles Kj(N ) do not decay yet
(fig. 1). In turn, the particles of admixture Kj(l) decay and gene-
rate the particles of substance Kj«(z) and non-decaying (harm-

less) substances, which be attributed to Kj(N ) and so on, while

we obtain only non-decaying admixture substances in the (N —1
)-th step.

We juxtapose the continuums KS«” (i :(),_N, j= (),_2) to
each component of the body (subsets of particles KS(O) that
forms the skeleton and to the particles of decaying substance in
different states Kj«(o) as well as the particles that formed as a

result of decay Kj«m (j=1;2,i=LN)).

B. Balance relations

As reference relations of the model we assume the balance
equations for masses of each component of the system. If the
change in mass of the component occurs due to mass fluxes
and internal sources [8], then the equations of balance of mass
of the component ij take place

ap(.i ) - L ) I _
- =V (pP5O)ew® (i=0N. j=02). ()
where py) are the densities of the system components, ﬁ;i) is

the velocities of motion of material points of the continuums
K(f) ; V is Hamilton’s nabla-operator; wgi)

internal source (or sink) of component j; ; the dot is the scalar
product [7].

Since we have assumed that the processes of sorption-
desorption and decay of admixture are treated as source (sink)
of the component, then in the general case the capacity of

(i)
Wi

is the density of

mass product can be presented as a sum

2 — —
w;1>=};)wyg+w;l> (i=0,N, j=02), )

k+j
(i)
J
i in the state ; in connection with its transition from the

where ®Y/ is the capacity of mass product of the component

continuum Kﬁf) ; W}i) is the capacity of mass product of the

component jj due to decay of particles of the component

i-1(i=1,N, j=1,2). Then we have

2 N
WO=0 (v, 3> =0:

j=li=l

€)
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Fig. 1. Scheme of cascade decay of admixture components of the thermodynamic system and sorption-desorption processes

including

0 =0 (), off =—f) (Vi,j.k), szy,g:owi).
j=0k=0

Let values of the body density p = Z pg.i) and velocity v
i,
introduced by the following equation

2 N )
7= 220 e @
j=0i=0

is attributed to the points of the continuum of mass centres
K. . We add Eq.(1) by all indexes i and ;.
Using the expressions (2) and (4) we obtain

03 (1)

2. zz"f V-7

v-Vp. (5)

Using that the total derivation with respect to time is

d/dt = 6/6t+v -V , the Eq.(5) can be written as
dp =
—=-pV-v. 6
P (6)

Write equation of balance for mass of component jj per the
total derivative with respect to time

sl oo

Take into account that p(’) —C(’)p where C(’) —p(’) /p is

the mass concentration of component satisfying the condition
of normalization

Zch) =1. (7)

Then we obtain
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o ac? d dc
p
+p(]’) =p—L- " C(’) & C(’)pV V=p d]

dt

because the relation (6) is valid. As a result we obtain equation
of balance of concentration of the component i in the state ;

e
dr

v MU A e

The quantity J; Jjo —p(’)( % \7) is the diffusion flux of the
component jj , introduced with respect to the points of the

continuum K_ .

Note that if we use the normalization condition (7), than
balance equation can be written as

i=0, 1,2, (8)

2 N
eV =1-33c. ©)

j=1i=0

(0
dcy”

G700l
dr J J 2

p

C. Kinetic equations and state equetions
If we have the aggregate of conjugate thermodynamic
forces and corresponding thermodynamic fluxes )?;i) +j§i),

X ,(f ) . wgf) , here the linear kinetic relations are

70 _ 38 g g (i _ oJ})
Jj ZZZL X's L =| =y |
0

m=1n=0 m

) _ O (l) (1) i) _ ol

0 =22 K’ » X O] (10)
m=11=1 X, ),

where )?;i) is vector thermidynamic force conjugated to

vector diffusion flux J ;i ), namely [7]

X0 = Vo +y9): ()

X fQ is thermodynamic force conjugated to thermodynamic

flux u)%) ; ui’) is the chemical potential of the component j; ,
\uy ) is potential energy of mass unit of component i in the

state j. So long as \115- _ng) =\|/§N> =y, the taking

into account the conditions (3), which the capacities of mass

(i)

products w}” , we obtain

2

N
33y Ou = szwm -

Jj=0i=0 Jj=0i=0

Let us take into account only the processes of transitions of
admixture particles between two ways of migration wg (

i :I,_N), i.e. the capacities of mass products due to the

rocesses of sorption-desorption ) and ®»{) are non-zero.
12 2

Thereto, the capacities of mass products W](i) for the

components j = I,_N obey the conditions

—(l) _ W(u )] +W(u+l) +W(1N) W(«H) =0
J J ’

—(l+ll) _ (ii+1)

w; Y =—w; (i=LN, j=12),
W}”ﬂ) 0for/>2, w(”) =0 for Vi; Wj(iN) = _Wj(Ni),
—(N ~—(Ni Eowvy . —a .
wit = 2w == Wi W =0 (j=0);
i1 i1
O = (i =LN ).

Here w(” D is the capacities of mass products of substance

Kgi) in j-th state at the j-th stage of cascade decay due to

); W(iiﬂ) , wj(iN)

decay of substance Kg«i - ; are the capacities of

mass sink of substance Kgi) at the stage i+1 and the last

stage of decay i = N in the j-th way of migration.

Then we have

ZZ“(:) (Z)‘ZZ“(Z){Z@%W@} (12)

j=1i=0 j=1i=0

The first term of the right-hand side of (12) can be
modified to the form

(z))mm

2 N 2 N
ZZZ () = — ( 0 _
Jj=1i=0k=1

Denote u)(l) = co ) (i —1 N ) are the scalar mass flows

characterizing mass exchange between states; Xl(l) are the

scalar thermodynamic forces conjugated to corresponding

mass flows oo(’) , namely

X =pd - (i=0.N). (13)

We present the second term of the right-hand side of (12) as

N— N-—
(5500 ((z+1> (0 i+ ((N) () ()
Zu j Zlu, uj Zlu, T T
1 1

Where we assume that w(’k ) }iN) (i,k=1,N —1) are scalar

mass flows characterizing decay of admixture particles and we
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consider them known; )_(ﬁl) ug”l) uy), XﬁN’) piN) uy)

(i=1,N, j=1,2) are scalar quantities conjugated to
(zk) W)

corresponding mass flows w; wi

As a consequence of Onsager’s conditions of reciprocity

[9], the coefficients L(]’,'f,) , k“kfg have to satisfy the conditions
L(},'f,) = L(,,'g) , A =2U)  and due to the second low of

(if)
Ly a5 =0,

o+ .

thermodynamics they obey such restrictions:

LIDL > (L5 + L0 4, 20 >

mm —

The linear state equations is

+Zd<z> 0

(@)
Jjo

i =p (14)

Here u(’) is the chemical potential of pure substance of the

component ij; d; 0 = (6u(’) / 6(:?) )0 are the material
characteristics of the system.
D. Key sets of model equations

As solving functions, we choose the derivation of con-
centration of admixture components cy) =C§i) —C;i)o from
the values in the reference state C;i)o, which corresponds with
the natural state of unlimited body without external influence.

If we substitute the expressions for thermodynamic forces
(11), (13) into kinetic equations for the thermodynamic fluxes
(10), then we obtain

SN

m=1n=0

(z) (n)

N
il ! !
D= A ).
=0

We express the chemical potentials per solving functions
using the linear state equations (14). Accept that the material
characteristics are independent on coordinates. Then

2 N
JO == lmarvel

m=1n=0
N
o :z[ﬂzl) () FUD D M(’”] (15)
=0
where 70 = 3(a® T () 2Dl are  the

concentrative coefficients of intensity of the processes of

intertransition of particles between states;

M = DD + (k(”) k(,ilz))u(zlg are the model constants.
Sum of terms in the expression (15) of type k%{)cl(l)

+ DS+ M

component of the thermodynamic system. From the beginning

we have assumed change of admixture mass can occur only

is describing the mass product of the
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due to particles transitions between states and due to decay of
substance. Thatis M{") =0,

If we substitute the expressions for the thermodynamic
fluxes of admixture (15) into equation of balance of

components concentration (8), then we obtain the equations of
heterodiffusion in the form

for i=0
dei” _ o[5S pongm |4 S Fron.o 4 3000
n n
- =V. ZZDW Ve, +Z[7m ¢+ Ay 0 ]_
m=ln=0 1=0
—%11)01(0) _}N\(ION)CI(O) ,
def” o &L ome | SFon.a) L on 0
n n
P dr ==V ZZDZm vcm _Z[k” € +k]2 © ]+
m=1n=0 =0

N -
(7 (00) () | 30D (D) |_ (D) .(0) _75(0N) (0) .
+Z[?\.21 o’ +A%c ]—7\.2 ey =hy ey

2

fori=1,N -1
+ k(]i—l)c](i—])

dc](i)
.2
= —v .

dr
N . —
> > Ve
m=1n=0
N _. ~ ) = L~ )
+ SR D L R |4 FGD LD T T

T afggaen]

for i=N
N _ N-1_ _
+ z[mw ST 4 SR 0
=0 i=0

2_6.{2 }_

N —
> 3 DT
m=1n=0
N _ N-1 .
+ 3 0D L TG [+ T RN
1=0 i=0

Here D(’”) =" d" are the kinetic coefficients of diffusion;

‘jm “m

=V.

Z Z D(m)vc(")

m=In=0

}Z[W) O LT

_ k(]i+1)c](i) ECIRUR
dcgi)
dr

N |— . —_—
. |-Shpar e
=0

dc]( )

ZZD(N")VC(")

m=In=0

dcgN)
de

N

(A (ND) (1) |~y (ND) (1
I RE
1=0

[

(16)

A,

Take into consideration that admixture of the same che-
mical kind decays equally in different states (fig. 1), i.e

0 _ SN

only the processes of diffusion and sorption-desorption of
particles of one chemical kind. Also we consider that chemical
reactions that led to decay of substance are irreversible. And
we assume independence of the model coefficients on co-
ordinates, neglect the convective term, and then the key model
of heterodiffusion in two ways under cascade decay of
migrating substances (16) takes the form

for i=0

(J‘“) k(;N) are constants defining the decay process.

7»(;), AU X(]’:”) , =X(]’:N ). Also take into account



oe®

= DVAY + DOA — kO 4

ot
];2(0)650) —7\.(11)6‘1(0) _X(ION)CI(O) ,
0y =0 x 0, O A0 L TO) (O
a—:Dzl AC] +D22 AC2 +kl Cl
t
— KO 500 _7OoM (0
fori=1,N-1
oD o
L =DYAP + DYPAL — ke +
ot
+ l;z(i)cgi) +'X(]i—l)c](i—]) _)N\I(]i+])c](i) _'X(]iN)c](i) ,
o .
—2-= DA + DYACY + kel -
ot
— KD 4 RN _FED ) N0,
fori=N
0™ S0 AN L T AN _ T ()
—— =D 'Ac;" + Dy Acy” =k g
ot
FEDED 4 A0
i=0
0SS A ) L B AN L TN (V)
=D, Ac;™’ + Dy, ' Acy™ + k7 et —
ot
MM+ 3 (17)
i=0

Here D(’) —D(”)/p (j,m=1,2, i=0,N) are the coefficients

of diffusion; k" =—A% /o, k{? =29 /p are the coefficients
of intensity of the processes of particles transitions between
states.

The sets of heterodiffusion equations (17) need to be supp-
lemented by the equation for finding the concentration of the
material particles (8) as well as the equation of continuity (6).

III. INITIAL-BOUNDARY VALUE HETERODIFFUSION PROBLEMS OF
CASCADE KIND|

For one-dimensional in spatial coordinate case in the
natural dimensionless form [10] heterodiffusion in two ways
under cascade decay of migration particles is described by the
following sets of partial differential equations at different
stages of cascade decay:
for i=0

(0).(0)
= — a1 C +
ot o2 1 oeer M

0) .(0
el

ac( ) azc(o) azc(o)
2 __ déo) ]2 +d© 22 + ag?)cl(o) —alPcl? 5(18a)
ot o ot
fori=1,N-1

0] 2,.(0) 2,.(0)
o _ g2 A g0 PG00 | 004 006D
ot gs 23 ’

() 2,.(0) 2 (i)
aczl =d§i) 0 c]l +d(l.) 0 &) +a§i])c](i) _
o a&f oe?
aDe® 1 alisD el ; (18b)
fori=N
aCI(N) N azcl(N) N 626‘; (N) (N)
T:dé ) P +d™ P —apy e’ +
N-1 )
+al M+ alVef?
i=0
(M) 2,(V) 2, (N
ot o0 @™ @Y o )
ot 2 aE_)Z a 2 21 “1
N-1 )
ay)cy) + 3 a4y (18)
i=0

where d(()i ) dD are the reduced coefficients of diffusion of sub-
stance Kg«i) (i =0,_N) at i -th step of decay in states j =1 and
2, 4",
0t ) =0 T+,
o) = (ko) FED 4 34D +x(1N))/k(°) a® =k /KO,
D = kD [k ; a;(; D =7»(; D / K is the coefficient of

intensity of decay of Ky’l) (i =1,_N,j =1;2), & is the

d$" are the reduced crossed coefficients of diffusion

coefficient determining part of non-decaying substance that has
been generated through decay at the i -th step Kgi ) (i= m
, j=1;2); kl(i), kg) are the coefficients of intensity of the
processes of transitions between states; 7»(]’:71), %}*”, K(;N ) are

the constants determining the decay process.
In sets of equations (18a)-(18c) we have used the

= (kéo) / D](?))]/zx , Where

t is time, x is the spatial coordinate; k() is the coefficient

dimensionless variables t©=k{"t;

of intensity of transitions of particles of K® from the second
state into the first one at zero stage of decay; Dl(?) is the

coefficient of diffusion of substance K(* in quick migration
way j=1. Further considerd{’ <d®, i=1,N , d{¥ =1.

Assume that at the initial moment admixtures were absent
in the body, namely

(’)(if) —cg)(i,r) L0 i=0,N, (19)0

for t>0 on the body surface £&=0 it is kept the constant

value of total concentration ¢, of substance K@, which is



distributed among different migration ways for i=0 as
follows

eV (&, o), (20a)

=acy. " (&) o (1=a)cy 5

where a (0 < a <1) is the parameter determining the part of

admixture that came from the body surface into the quick way.
For i=1,..,N we assume zero boundary condition at the
top layer surface:

" @rf,_ =0, | =0, i=LN. (0b)

We assume that the particles concentrations at all stages of
decay equal zero at “bottom” boundary of the body, i.e.

4", =), =0, i=0N. @00

At zero stage of decay the solutions of heterodiffusion equa-
tions (18a) with initial (19) and boundary (20a), (20b) conditions
are found using integral transformation. Then we obtain
concentration of decaying admixture in quick migration way

d’@O | bl &) s, b sy
Co ce & : X sinx,
B 5+£ sin(mt— y)x, _ii siny,& 5
] X2 sin 1ur, €0 121 V(81— 52)

><|:((lsl D +%jem _(asz D +%jew} , (21a)
I 2

concentration of decaying admixture in slow migration way
(0) 7 7 ; _
(T g) 1_a_b_2 1_£ _B a’z+b_2 S]n(:ﬂ: y)xl_
o ce & X sin mx;
(g, + b |sinn=)ny || 2 & sinpt
X2 SITLX, €0 ndt Vu(s1—52)

H(l o)s, + p; + ISZJ ((l —a)s, + p| +l:—,2jeszr} , (21b)
1 2

total concentration of decaying substance ¢ = 01(0) + cgo)
cO(1,8) b 3 b \sin(n—y)x
RRNANUL T ST (S PR - | ) e S 2
Co ce & X sin mx,
.0 Sln(ﬁ—y)XZ _iz sin y,&
X2 S TLx, €0 ot Vu(s1—52)

{(s, + 7 +%je“ —(sz + P +%je} (21c)
1 2
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where B=

1 1 / 2
IrEEL x]2=5 —1+ d——4e , d=a,+a,,
d”—4ec ¢

b=b+by, p, =p,+p, (1=12), @ = (do)oc2+d(°)oc]) =,

0
> 0 ~ 0 0
b :0‘1“;2) 0‘2“1(2)’ a = (az +0c]d( )) bz 2“1(1) 0‘1"(21)’
o
(0) (0) 7(0) _ (0) (0 0) (0
(d —d;"d; ) 70 e_al(l)agz) _al(z)agl) >
0

2
T
d=d9 +a0d® + +d0a +dVa) )_2

[ 2
Sl,z=—m/2i (‘11/2) M, M= :yn(d(0)+l)+a§g) +al((1))’
0 40) 40 0) , (0) 40 0) (0 0) (0
=000l a0+ a2y 2

a Va0 _ 40O 1 =(0d® —dO x
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Note that for the model of heterodiffusion of decaying
substance the asymptotic summand of the obtained solutions
are essentially non-linear and consist of various combinations
of relation of type sin((n— y)x)/sinmx . With that each of

such relations is less than 1. Also note that the linear parts of
the asymptotic summands of analogical problem heterodiffu-
sion of non-decaying substance, i.e. 1-£/&, , are proportional
to the coefficient determining the part of admixture that came
from the boundary into the corresponding migration way (o,
1-o and 1). At the same time taking into consideration decay
of migrating substance leads to the appearance of certain
“allowance” in such coefficients (E /ce, 52 /ce and b /ce).
Take into account that these “allowances” are nonnegative
then linear parts of asymptotes of function (4) are not larger
the similar terms of concentrations of non-decaying
substances, and in each state separately.

For the other stages of cascade decay i =1, N —1 solutions
of the initial-boundary value problems are presented per
corresponding Green functions, considering admixture decay
at the previous stage of cascade as mass source at the step i :

T &
€ =al I I G en )l V(e v egdr, j=1; 2.,(22)
00

Here G;i)(r, 7;&,&") are Green functions of the problems

(18b), (19), (20b), (20c) for i =1, N —1.
For the case of i =N (non-decaying admixture) the

process of heterodiffusion is described by the initial-boundary
value problem (18¢), (19), (20b) and (20c). Its solutions is also



presented in terms of Green functions by analogue of the

formula (22) fori =1, N — 1, namely

T & N-1
VE0=[[eMeEn)y ale (e e, j=1.2,
00 i=0

(23)
where GﬁN)(ﬁ,ﬁ';r,r') (j=1,2) are Green functions of the

problem (18¢), (19), (20b) and (20c).

Consequently determination of concentrations at each stage
i=0,.,N—-1 by the formulaec (21) and (22) with account
expressions for Green functions we find concentrations of non-
decaying particles under cascade decay of admixtures.

The analytical form of the obtained concentrations allows
au to find expressions for the mass fluxes of decaying
substances at different stages of cascade decay through the
surface & =&., where 0< &, <& . Proceeding from the linear

kinetic relations [11], mass fluxes are determined in the natural
dimensionless variables such as

(@) (i)
J’gi)(r) = _W d(()i) 9¢” (1) 4 d](,') ocs (E,7) ’
23 R
§=&-
(@) (0
P P T
23 o
&6
24)

and the total flux through the surface § =&,

(25)

JO=J|  +JY
O= Sl g+

§=6+
If we have obtained the diffusion fluxes of decaying
substances then we can find the function [10]

Tx
o' = [/ e, i=0N, (26)
0

which determines quantities of decaying substances Q(()[)(r),
that passed through the surface £=¢, (the bottom body

boundary) over time-interval [0;T.] .

IV. ARCHITECTURE OF PROGRAM COMPLEX FOR
HETERODIFFUSION MODEL

On the basis of the formulae (21), (22), (23) for admixture
concentrations and corresponding formulae for mass fluxes (24),
(25) and quantities of decaying and non-decaying admixture
components that passed through the bottom layer surface (26),
software has been designed for simulation of mass transfer
processes in a body with two migration way that been
accompanied sorption-desorption processes and cascade decay
of admixtures particles. Architecture of the program complex for
simulating mass transfer processes under cascade decay of
particles for the model of heterodiffusion in two ways is
presented in Fig.2.

Schemes of application modules for calculation of
diffusion fluxes and quantity of substances passed through the
layer are shown in Figs.3 and 4.

Concentrations of decaying substances l

Ouantity of decaying substances
passed through the layer

l

Mass fluxes of decaying substances ‘

|

[ Mass flux Jilu (1) in quick Mass flix J:L;‘ 1) in stow

Concentration in porous Concentration oi the nmﬁ”
solution p]“" surface of the skefeton €,
Stage + s .
of decay \ LT e - -

=0 Toral concentration of particles ¢

== = = = R e section =t

way fhrough miigration way through

the seetion = = 5.

Quantity of substance

[ Total mass flux J\" (T ylirough the section % = %, ] = = = passed through the lower

L | i 1

e e T Concentration on the inner |
, M

seolution ,:l\" surface of the skeleton < |

J

7 g e gl

Total concentration of particles ¢"V(5, ty

L]

¥

Concentration on the inner
(X1}

Stages of decay =1 N

Concentration in porous
solution ¢}~

N

surfuce of the skeleton ¢
T

—(N-1)
<

g
{l
[{

R e
i i b

W

-

boundary of the body Of)

Mass flux J P(T) in quick, |
migration way through |
the section ¢ =%, |

way nrigration tirouglh
the section

£

[ Total mass flux Jf“(r)lhmugh the section 5= 2. : -

S0
Mass flux 35 () i stow, l

=t

Dliizritiy i iebuiizricle
passed through the lower
boundary of the body Q(;]!:

Ve &
\)’n'ssﬂu'\'.ffgv n(t)in |
slow way migration
through the section £ =%, ‘

b=

Mass flux J.[[V’”(I) in
quicic way migration
through the section &= &,

Onantity of substance
passed through the lower

[ Total mass flux J\ (1 )through the section & =

Total concentration of particles
1
Concentration on the inner

-
i
P
i
i surfuce of the skeleton ¢5"

L = hm
1N el Lo

Nondecaying
sibstances
=N

Concentration in porous
. (0'8]
solution ¢’

]

p R iy -
wrdh R irRas

L

\ . 2 S W
{ Total concentration of particles ¢ Lv“. 1
\ X g i

<

iy ~

Fig. 2.

-

bourrdary of te ﬁndy(j:,‘: k

G
Mass flix Ty () in quick,
R it i e F
the section S==5.

way migration through

the section & =

[.\mss e JEO (T in stow,

Ee

Ouantity of substance
passed through the lallr'ﬂ\';
boundary of the body U5,

! Total mass flux J}"“"(‘r) through the section ===, ]— -
<

e o

RORAA e’
. QB k;’
Output results } =

Architecture of program complex for the model of heterodiffusion in two ways under cascade decay of particles

281



Program module for calculation
of mass fluxes J (1)

program module for
calculation of concentration

5

calculation

f(z,8)

calculation
vk

L * ’0
* A .*
‘jump to program module for
oo *** _calculation of mass fluxes / | "7«
+ ¢ g .

A
calc;:_;ation : calculation
Ji'(x) T = ct;c(glasﬂﬂ aus i,

L . g

data output
J}l*'l (1) data output

JO (1)

validation
i<N+1

validation
i<N+1

data O_;ltpllt
J3 ()

w ] Aol
‘Q LT <. s®* a dnu.t execute don't execute s a, TG “’
i<N+1 i<N+1 i<N+1 I<N+1
‘e calculation s®
S

data output
JN ()

Fig. 3. Scheme of algorithm of the program module for calculating the diffusion fluxes of decaying substances
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Note that program modules for fluxes and quantities
substances consist of one by one cyclic process, and at each
stage the modules interact with the module for concentrations
at the previous stage. At the same time the module for
calculation of the admixture concentrations contains two cyclic
processes.

CONCLUSIONS

Thus, for the description of processes of admixtures mass
transfer in two ways under their cascade decay, the
mathematical model is constructed where the concentration of
particles at certain stage of decay is the mass source of
decaying substance diffusing at the next step. For specific
scheme of cascade decay the balance relaions for mass of
components of the system are formulated. The linear state
equations and Kkinetic relations are obtained. The conditions
under which the mass production capacities for the
components of the system obey, are established. The key sets
of equations of the model of heterodiffusion in two ways
under cascade decay of migrating particles are obtained taking
into consideration only processes of diffusion and sorption-
desorption and under the assumption thhat chemical reactions
that led to the decay of substance is irreversible.

On the basis of the constructed model new statements of
initial-boundary value problems of cascade type where the
concentration of particles at certain step of decay is the mass
source of decaying substance at the next, which also diffuses,
is sorbed, desorbed and decays. For linear chemical reactions
the solutions of the initial-boundary value problems of cascade
type are constructed by iterrative procedure with using Green
functions. This make it possible to obtain the fluxes of
migrating conponents and quantities of corresponding
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substances that passed through certain substance, for example
bottom boundary of the body, for given time interval.

The program package for simulation of mass transfer in the
body with two migration ways under cascade decay of
admuxtures is designed. Numerical analysis of concentrations
of decaying particles and mass fluxes is carried out.
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