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Abstract—A new method of modeling for heterogeneous fluid 
dynamics processes with take of phase transitions like graphite-
diamond will be presented. The method is based on a 
discretization of conservation laws for masses, momentums, and 
energies in integral and differential forms. The combination of 
Harlow's particle-in-cell method and Belotserkovskii's large 
particles method is used for computing by the method simulation.   

Анотація—Новий метод моделювання процесів динаміки 
неоднорідної рідини з урахуванням фазових переходів 
графіт-алмаз буде презентовано. Метод ґрунтується на 
дискретизації законів збереження маси, моментів і енергії в 
інтегральній і диференціальній формах.  Комбінація методів 
частинок у комірках Харлоу та методу крупних частинок 
Білоцерківського використовується при чисельній реалізації 
цього методу.  
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I. INTRODUCTION 
A new method of direct parameter computing for some 

processes of heterogeneous fluid dynamics with take of phase 
transitions like graphite-diamond will be presented. It is 
supposed that the fluids are compressible and inviscid (non-
viscous). Heterogeneities of the fluids are considered as small 
drops or particles of one fluid within other fluid. Total number 
of the drops may be large enough and the drops may have 
phase transitions. Thus simulations of the main fluid (or gas) 
with small transited drops dynamics are discussed. These are 
dynamics of multiphase flows really. Therefore it is possible 

to use general multiphase flow models in the case. However, 
relevant equations are not complete as a rule. For example, 
there is a problem as to distribute energies between the phases 
in the model dynamics. Various physical experiments are 
necessary for solving of the problem in concrete cases. The 
situation is more difficult whenever phase transitions like 
graphite-diamond are possible. 

 Presented method is based on a discretization of 
conservation laws for masses, momentums, and energies in 
integral and differential forms. The discretization is natural 
and numerical simulations are realized as direct computer 
experiments for dynamics of main fluid together with transited 
drops without use multiphase flows approach. The method 
seems to be much more adequate to the physical and 
mathematical essence of the dynamics because conservation 
laws are correct on the discrete level at least.  

The presented method is a combination of the Harlow's 
particle-in-cell method and Belotserkovskii's large particles 
method (see [1] and [2], for example). Let us recall some 
background of the methods before to give more details on the 
method combination. 

Euler's and Lagrange's approaches are used simultaneously 
in the particles in cells method for homogeneous fluid (or gas). 
The method is based on a discretization of conservation laws 
for masses, momentums, and energies of the fluid in the 
following integral forms  
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where  and are volume and surface of some 
Lagrange's domain in the fluid,  is an exterior normal to the 
domain,  and are unknown density, 
velocity, and full energy. For example, the case of three 
dimension space may be discussed and therefore by definition 
ones have  

 

II. MODELING METHOD 
It is known [1] that the conservation laws are equivalent to 

conservation laws for masses, momentums, and energies of 
the fluid in the following differential forms  
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where  is the tensor square of vector function 
 and  is a point of some domain , 

which is filled by the heterogeneous fluid under consideration. 
The time discretization in the method is natural. 

Simulations are conducted step by step with a small enough 
time interval  that starting from an initial configuration. 
The space discretization in the method is more complicated 
and dynamics are taking into consideration. The fluid region 

 is divided into cells with the small size  and the fluid 
filling every such cell is considered as a collection of a few 
particles or drops. Every such particle have own mass, 
volume, energy, and coordinates that are specified at an initial 
moment. In addition the density, velocity, and full energy 

 are specified for every such cell with 
number  at the time moment . 

Corresponding time step of the simulation is split up to 
three stages so the discrete conservation laws are faithful. For 
example, the total mass of particles under consideration is 
saved at every time step of such discretization. 

On the first stage of the time step, the intermediate 

velocities  and the energy  of particles from the 
sell with number  are calculated by the following 
formulas 
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and similar formula is used for .   

This is the Euler's stage for approximations of transport 
free momentums equations in (1) by the pressure forces for 
every sell. On the second stage, motions of the particles by the 
velocities are taking into account. This is the Lagrange's stage 
for an approximation of masses equation that is modeling of 
mass transports from a sell to surrounding sells. On the third 
stage, moving of the momentums and energy are calculated. 
This is the concluding stage for approximations of pressure 
free momentums and energies equations in (1) that are 
modeling of the momentums and energy transports by the 
dynamics from a sell to surrounding sells. 

The approximations are rationale from physical and 
mathematical point of view since conservation laws are 
correct on the discrete levels during the courses of 
corresponding numerical simulations. Therefore the particle-
in-cells method is effective enough for numerical evaluations 
of homogeneous fluid (or gas) dynamics by boundary 
conditions and external forces. Concrete types of fluid are 
defined here by a form of state equation where 

 is a notation for interior energy. 
An essential problem is only that total number of particles 

may be very large. Indeed total number of cells must be large 
enough for best approximations and the number of particles at 
every cell must be large enough also. Moreover every such 
particle must have own mass, volume, energy, and 
coordinates. Thus there is massive data and the data is 
recalculated from step to step.  
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In order to avoid the problem it is possibly to use the large 
particles method. The time discretization in the method is 
similar to the discretization in the particles in cells method. 
The space discretization in the method is following. Fluid 
region is divided into cells with small size and the fluid filling 
every such cell is considered as a large particle or drop. Every 
such particle have own mass, volume and energy that are 
specified at an initial moment. In addition the density, 
velocity, and full energy are specified for every such cell at 
the moment. But the volume of particle is coincided with the 
volume of cell now. Therefore the mass and energy of particle 
are defined by the density and full energy. Thus the data is not 
so massive in the method. 

Corresponding time step of the simulation is split up to 
three stages also and so the discrete conservation laws are 
faithful. The stages are similar to the stages of the particles in 
cells method, for example, formulas (3) are used on the first 
stage. Modifications are need only for modeling of the mass 
and momentums transports by the dynamics. For example, the 
mass transports are calculated as moving of corresponding 
share of large particle mass from the cell to corresponding 
surrounding sell by the following formulas 
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where   are calculated as 
in (3) and we use the equalities   
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On the third stage, moving of the momentums 

 and the energy on the step  are 
calculated by the following formulas 
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where  is the volume of the cell under 

consideration and the values   are 
calculated as in formulas (5).  

Thus total mass of the fluid under consideration is saved at 
every time step of such discretization if there are no external 
mass sources under the simulation of course. For example, the 
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mass sources may be induced by boundary conditions and 
external forces that leads to corresponding modifications of 
conservation laws in (1) and on the discrete level also. The 
momentums and energy transports are modeling in similar 
manners. The approximations are rationale also. Thus large 
particles method is effective enough for numerical evaluations 
of homogeneous fluid dynamics also and the recalculated data 
is not very massive as in particle-in-cell method.  

Let us return to presented method. The method is designed 
to numerical modeling of the main fluid with small transited 
drops dynamics. The time discretization in the method is as in 
above methods. The space discretization in the method is 
following. Heterogeneous fluid region is divided into cells 
with small size. The main fluid filling every such cell is 
considered as a large particle while the transited drops are 
considered as the collection of a few "small" particles in the 
cell. Every large particle have own mass, volume and energy 
that are specified at an initial moment. Every small particle 
have own mass, volume, energy, and coordinates that are 
specified at the moment. In addition the density, velocity, and 
full energy are specified for every such cell. This is a 
combination of above methods at the initial moment. 
Corresponding time step of the simulation is split up to three 
stages with additional preliminary stage.  

On the preliminary stage, energies of large particle and 
small particles in every cell are distributed between the 
particles so that a pressure in the cell is uniform. Indeed the 
large particle induce some pressure by own state equation and 
the small particles induce some pressure by own state equation 
and it is natural to distribute energies of the particles so that 
the first pressure coincides with second pressure. Moreover on 
the stage, it is possible to observe phase transitions of the 
small particles by the pressure, for example. The phase 
transitions are realized if the pressure is more than critical 
pressure by the corresponding phase diagram. In the case the 
small particles may change own volume, energy, and state 
equation. Thus the heterogeneous fluid may have three or 
more phases.  Thus, we use formulas (3) on the stage to 
calculate the intermediate velocities  and the energy 

 of particles from the sell with number  at the time 
moment . The remaining stages are similar to the 
stages of above methods. For example, the mass transports are 
calculated as moving of corresponding share of large particle 
mass and small particles masses from the cell to corresponding 
surrounding sell by formulas (5), which are used in (6).  

Thus total mass of the heterogeneous fluid under 
consideration is saved at every time step of such 
discretization. The momentums  and the energy 

on the step  are modeling in similar manners by 
formulas (6). Thus, this is a combination of above methods 
from step to step during the courses of corresponding 
numerical simulations. The method seems to be reasonable for 
numerical evaluations of such heterogeneous fluid (or gas) 

dynamics and the recalculated data is not very massive. On the 
other hand it is possible to use the particles in cells method 
with the preliminary stages for modeling of the dynamics. But 
the recalculated data is very massive in the case.  

The presented method is designed to numerical modeling 
of following physical processes. Let consider graphite drops 
distributing uniformly in some fluid. More exactly, there is 
heterogeneous medium with graphite particles and the medium 
may be considered under high pressure as "fluid" with 
corresponding state equation. For example, we consider a 
cylinder of the medium that consist of copper with graphite 
particles. Let the cylinder be in an outside explosive tube 
device. Inducing detonation shock waves in the outside 
explosive tube device, we can observe dynamics of such shock 
waves in computer experiments by the method.  

Results of the computer experiments may be found in [3].   
The results were in agreement with known results of physical 
experiments. More details of the presented method and other 
modifications may be found in papers [4,5].  

The presented method was applicable to numerical 
simulations of plasma dynamics according to [6]. The plasma 
may be considered as gas with ionized particles. The gas and 
particles were defined by corresponding state equations. 
Equations (2) were coupled with Maxwell's equations and on 
the discrete level also. Inducing motions of the heterogeneous 
plasma in some region it was possible to observe absorption of 
the ionized particles on relevant boundaries in computer 
experiments by the method coupling with appropriate method 
for Maxwell's equations [3, 6]. Alternative methods and 
corresponding references for the problem may be found in [7]. 
     Nevertheless, the presented method seems to be perspective 
for numerical simulations of other absorption and diffusion 
processes in complex fluid and plasma dynamics. 
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