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Abstract—A new method of modeling for heterogeneous fluid
dynamics processes with take of phase transitions like graphite-
diamond will be presented. The method is based on a
discretization of conservation laws for masses, momentums, and
energies in integral and differential forms. The combination of
Harlow's particle-in-cell method and Belotserkovskii's large
particles method is used for computing by the method simulation.

Anomauyia—HoBuii MeTOJ MOZETIOBAHHA NPONECIB THHAMIKH
HEOMHOPiAHOI PpiIMHM 3 ypaxyBaHHsM (a30BHX mepexodiB
rpadir-aimMa3 0Oyae mnpe3eHTOBaHO. MeTojd IPYHTYETbCH Ha
AUCKpeTH3alii 3aKoHiB 30epe:KeHHs MacH, MOMEHTIB i eHeprii B
iHTerpaibHiii i 1udepennianbhiii popmax. KomOinaunist meronis
YAaCTHHOK y KOMipkax XapJjioy Ta MeTody KPYNHHX YaCTHHOK
BistonepKiBCbKOro BHKOPHCTOBYETHLCSI PH YHCENIbHIN peastizamii
IbOr0 MEeTOoIy.
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A new method of direct parameter computing for some
processes of heterogeneous fluid dynamics with take of phase
transitions like graphite-diamond will be presented. It is
supposed that the fluids are compressible and inviscid (non-
viscous). Heterogeneities of the fluids are considered as small
drops or particles of one fluid within other fluid. Total number
of the drops may be large enough and the drops may have
phase transitions. Thus simulations of the main fluid (or gas)
with small transited drops dynamics are discussed. These are
dynamics of multiphase flows really. Therefore it is possible
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to use general multiphase flow models in the case. However,
relevant equations are not complete as a rule. For example,
there is a problem as to distribute energies between the phases
in the model dynamics. Various physical experiments are
necessary for solving of the problem in concrete cases. The
situation is more difficult whenever phase transitions like
graphite-diamond are possible.

Presented method is based on a discretization of
conservation laws for masses, momentums, and energies in
integral and differential forms. The discretization is natural
and numerical simulations are realized as direct computer
experiments for dynamics of main fluid together with transited
drops without use multiphase flows approach. The method
seems to be much more adequate to the physical and
mathematical essence of the dynamics because conservation
laws are correct on the discrete level at least.

The presented method is a combination of the Harlow's
particle-in-cell method and Belotserkovskii's large particles
method (see [1] and [2], for example). Let us recall some
background of the methods before to give more details on the
method combination.

Euler's and Lagrange's approaches are used simultaneously
in the particles in cells method for homogeneous fluid (or gas).
The method is based on a discretization of conservation laws
for masses, momentums, and energies of the fluid in the
following integral forms
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where V(t) and S(¢)are volume and surface of some
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Lagrange's domain in the fluid, N is an exterior normal to the
domain, p=p(p,E) and p,W, Eare unknown density,

velocity, and full energy. For example, the case of three
dimension space may be discussed and therefore by definition
ones have W = (u,v,w).

II. MODELING METHOD

It is known [1] that the conservation laws are equivalent to
conservation laws for masses, momentums, and energies of
the fluid in the following differential forms
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where W QW
W =W(t,x,y,z) and x,y,z is a point of some domain €2,

is the tensor square of vector function

which is filled by the heterogeneous fluid under consideration.

The time discretization in the method is natural.
Simulations are conducted step by step with a small enough
time interval A¢ that starting from an initial configuration.
The space discretization in the method is more complicated
and dynamics are taking into consideration. The fluid region
Q is divided into cells with the small size Ax and the fluid
filling every such cell is considered as a collection of a few
particles or drops. Every such particle have own mass,
volume, energy, and coordinates that are specified at an initial
moment. In addition the density, velocity, and full energy

pau" V' ow' E" are specified for every such cell with

number i, j,k at the time moment ¢ = nA¢ .

Corresponding time step of the simulation is split up to
three stages so the discrete conservation laws are faithful. For
example, the total mass of particles under consideration is
saved at every time step of such discretization.

On the first stage of the time step, the intermediate
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velocities u ,v ,w and the energy E' of particles from the
sell with number i,j,k are calculated by the following
formulas
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and similar formula is used for p;,, , ... w5 -

This is the Euler's stage for approximations of transport
free momentums equations in (1) by the pressure forces for
every sell. On the second stage, motions of the particles by the
velocities are taking into account. This is the Lagrange's stage
for an approximation of masses equation that is modeling of
mass transports from a sell to surrounding sells. On the third
stage, moving of the momentums and energy are calculated.
This is the concluding stage for approximations of pressure
free momentums and energies equations in (1) that are
modeling of the momentums and energy transports by the
dynamics from a sell to surrounding sells.

The approximations are rationale from physical and
mathematical point of view since conservation laws are
correct on the discrete levels during the courses of
corresponding numerical simulations. Therefore the particle-
in-cells method is effective enough for numerical evaluations
of homogeneous fluid (or gas) dynamics by boundary
conditions and external forces. Concrete types of fluid are

defined here by a form of state equation p = p(p,J), where

J=E-W?/2 is anotation for interior energy.

An essential problem is only that total number of particles
may be very large. Indeed total number of cells must be large
enough for best approximations and the number of particles at
every cell must be large enough also. Moreover every such
particle must have own mass, volume, energy, and
coordinates. Thus there is massive data and the data is
recalculated from step to step.



In order to avoid the problem it is possibly to use the large
particles method. The time discretization in the method is
similar to the discretization in the particles in cells method.
The space discretization in the method is following. Fluid
region is divided into cells with small size and the fluid filling
every such cell is considered as a large particle or drop. Every
such particle have own mass, volume and energy that are
specified at an initial moment. In addition the density,
velocity, and full energy are specified for every such cell at
the moment. But the volume of particle is coincided with the
volume of cell now. Therefore the mass and energy of particle
are defined by the density and full energy. Thus the data is not
so massive in the method.

Corresponding time step of the simulation is split up to
three stages also and so the discrete conservation laws are
faithful. The stages are similar to the stages of the particles in
cells method, for example, formulas (3) are used on the first
stage. Modifications are need only for modeling of the mass
and momentums transports by the dynamics. For example, the
mass transports are calculated as moving of corresponding
share of large particle mass from the cell to corresponding
surrounding sell by the following formulas
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On the third
u™ v w! and the energy E""'on the step n+/ are
calculated by the following formulas
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where O, =AxAyAz is the volume of the cell under
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consideration and the values u;1+l/2,j,k,ui—l/z,j,k,...,Ei,/,k—l/? are
calculated as in formulas (5).

Thus total mass of the fluid under consideration is saved at
every time step of such discretization if there are no external
mass sources under the simulation of course. For example, the



mass sources may be induced by boundary conditions and
external forces that leads to corresponding modifications of
conservation laws in (1) and on the discrete level also. The
momentums and energy transports are modeling in similar
manners. The approximations are rationale also. Thus large
particles method is effective enough for numerical evaluations
of homogeneous fluid dynamics also and the recalculated data
is not very massive as in particle-in-cell method.

Let us return to presented method. The method is designed
to numerical modeling of the main fluid with small transited
drops dynamics. The time discretization in the method is as in
above methods. The space discretization in the method is
following. Heterogeneous fluid region is divided into cells
with small size. The main fluid filling every such cell is
considered as a large particle while the transited drops are
considered as the collection of a few "small" particles in the
cell. Every large particle have own mass, volume and energy
that are specified at an initial moment. Every small particle
have own mass, volume, energy, and coordinates that are
specified at the moment. In addition the density, velocity, and
full energy are specified for every such cell. This is a
combination of above methods at the initial moment.
Corresponding time step of the simulation is split up to three
stages with additional preliminary stage.

On the preliminary stage, energies of large particle and
small particles in every cell are distributed between the
particles so that a pressure in the cell is uniform. Indeed the
large particle induce some pressure by own state equation and
the small particles induce some pressure by own state equation
and it is natural to distribute energies of the particles so that
the first pressure coincides with second pressure. Moreover on
the stage, it is possible to observe phase transitions of the
small particles by the pressure, for example. The phase
transitions are realized if the pressure is more than critical
pressure by the corresponding phase diagram. In the case the
small particles may change own volume, energy, and state
equation. Thus the heterogeneous fluid may have three or
more phases. Thus, we use formulas (3) on the stage to

n n n

calculate the intermediate velocities u ,v ,w and the energy

E' of particles from the sell with number i, j,k at the time

moment ¢ =nA¢. The remaining stages are similar to the
stages of above methods. For example, the mass transports are
calculated as moving of corresponding share of large particle
mass and small particles masses from the cell to corresponding
surrounding sell by formulas (5), which are used in (6).

Thus total mass of the heterogeneous fluid under
consideration is saved at every time step of such

n+l n+1

n+l
W

discretization. The momentums u"*",v and the energy

E""on the step n+ 1 are modeling in similar manners by
formulas (6). Thus, this is a combination of above methods
from step to step during the courses of corresponding
numerical simulations. The method seems to be reasonable for
numerical evaluations of such heterogeneous fluid (or gas)
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dynamics and the recalculated data is not very massive. On the
other hand it is possible to use the particles in cells method
with the preliminary stages for modeling of the dynamics. But
the recalculated data is very massive in the case.

The presented method is designed to numerical modeling
of following physical processes. Let consider graphite drops
distributing uniformly in some fluid. More exactly, there is
heterogeneous medium with graphite particles and the medium
may be considered under high pressure as "fluid" with
corresponding state equation. For example, we consider a
cylinder of the medium that consist of copper with graphite
particles. Let the cylinder be in an outside explosive tube
device. Inducing detonation shock waves in the outside
explosive tube device, we can observe dynamics of such shock
waves in computer experiments by the method.

Results of the computer experiments may be found in [3].
The results were in agreement with known results of physical
experiments. More details of the presented method and other
modifications may be found in papers [4,5].

The presented method was applicable to numerical
simulations of plasma dynamics according to [6]. The plasma
may be considered as gas with ionized particles. The gas and
particles were defined by corresponding state equations.
Equations (2) were coupled with Maxwell's equations and on
the discrete level also. Inducing motions of the heterogeneous
plasma in some region it was possible to observe absorption of
the ionized particles on relevant boundaries in computer
experiments by the method coupling with appropriate method
for Maxwell's equations [3, 6]. Alternative methods and
corresponding references for the problem may be found in [7].

Nevertheless, the presented method seems to be perspective
for numerical simulations of other absorption and diffusion
processes in complex fluid and plasma dynamics.
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