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Abstract—This article is dedicated to research of 

approximation properties of Lagrangian finite elements in 
Hilbert spaces of functions defined on surfaces in three-
dimensional space. The conditions are determined for 
convergence of collocation methods for solving Fredholm integral 
equation of the first kind for simple layer potential that is 
equivalent to Dirichlet problem for Laplace equation in R3. 
Estimation is determined for the error of approximate solution of 
this problem obtained using potential theory methods. 
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I.  INTRODUCTION  
Many physical processes (e.g. diffusion, heat flux, 

electrostatic field, perfect fluid flow, elastic motion of solid 
bodies, groundwater flow, etc.) are modeled using boundary 
value problems for Laplace equation [1]. The powerful tools 
for solving such problems are potential theory methods, 
especially in the case of tired boundary surface or complex 
shape surface [2]. In number of cases, application of potential 
theory methods requires solving Fredholm integral equation of 
the first kind. In particular, one of the cases is solving 
Dirichlet problem in the space of functions with normal 
derivative jump on crossing boundary surface using simple 
layer potential [3]. The need to solve integral equations of the 
first kind also arises when the sum of simple and double layer 
potentials is used to solve the double-sided Dirichlet or 
Neumann problem [4] or double-sided Dirichlet-Neumann 
problem [5] in the space of functions that, same as their 
normal derivatives, have jump on crossing boundary surface. 
Many systems of integral equations for the simple and double 
layer potentials that are equivalent to mixed boundary value 
problems for Laplace equation, also contain integral equations 
of the first kind [6]. In general, researches of projection 
methods convergence mainly focus on solving integral 
equations of the second kind. Defining well-posed solvability 
conditions for integral equations of the first kind that are 
equivalent to boundary value problems for Laplace’s equation 
in Hilbert spaces [7, 8] allows us to use projection methods for 
numerical solution of such equations, thus avoiding resource-
consuming regularization procedures. In [9, 10] convergence 
conditions are defined for the series of projection methods for 
solving Fredholm integral equation of the first kind for simple 
layer potential that is equivalent to three-dimensional Dirichlet 
problem for Laplace equation while approximating desired 

potential density with complete systems of orthonormal 
functions. However, if boundary surface has a complex shape 
usage of such approximations poses considerable difficulties 
for practical implementation of numerical methods. In this 
case, finite elements of different types should be used for 
approximation of desired potential densities. Derived 
approximations, among other things, allow us to create 
effective algorithms for singularities removal in kernels and 
desired integral equation densities [11].  

The purpose of the paper is to define convergence 
conditions of collocation method for approximate solution of 
Fredholm integral equations of the first kind by the example of 
integral equation for the simple layer potential that is 
equivalent to Dirichlet problem for Laplace equation using 
approximation of desired potential density with systems of 
Lagrangian finite elements of different orders. 

II. LAGRANGIAN APPROXIMATIONS  

Let us 2],0[],0[ RbaS  . Construct in the domain S  
a rectangular grid hS  with the steps nah /1   and kbh /2  , 

,...2,1, kn  Assign to each element of the grid hS  of domain 
S   

)]1(,[)]1(,[ 2211  jhjhihihPij , 

)1)(1(0  ni , )1)(1(0  kj , 

a smaller rectangular grid 
ijP  with the steps mh /11   and 

mh /22  . Denote 
ji

ijh PS
,

,


   and associate with the set of 

nodes ,hS  a system of piecewise polynomial functions  
mkmn
tpptL 00)}({  ,   (1) 

satisfying conditions 

tspllsptL  )( , supp ptpt PL ~)}({  , 

         }:{~

,


ji
ijptijpt PPP   , ptls P~ , (2) 

where pl  is the Kronecker symbol.  
Functions (1)-(2) form a system of Lagrangian finite 

elements of m-th degree in )(SH m . Denote by 1N
LU  the 

linear shell of this system, )1)(1(1 mkmnN  . It is obvious 
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that the restriction of system (1)-(2) onto an arbitrary rectangle 
ijP  of the grid hS  is a basis in the space of polynomials 

)( ij
m P  of degree not higher than m, defined on ijP . Then  

1N
L

N
B UU  ,  (3) 

where N
BU  is the linear shell of the system of B-splines of m-

th degree defined on hS  [12].  
Choose the extension operator 

)(: 111 SHUVp mN
L

N
L

N
L  , where 11 NN

L RV  , in the form  

            
 


mn

i

mk

j
ij

ji
N

N
L

N
L Lvp

0 0

),( )(
1

11 v . (4) 

Then, by virtue of the embedding (3), there exists a restriction 
operator 11 )(: N

L
mN

L VSHr   such that approximations 

),,( 111 N
L

N
L

N
L rpV  of the space )(SH m  are convergent and 

valid the estimates  

)()(

~11
SH

t
SH

N
L

N
L vhCvrpv

t 
  ,  (5) 

where 10  mt  , mt  , and constant 0~
C  does not 

depend on v. Thus, it is proved 
Lemma 1. There is a restriction operator 

11 )(: N
L

mN
L VSHr   such that approximations 

),,( 111 N
L

N
L

N
L rpV  of the space )(SH m  are convergent and 

valid the estimates (5). 

Assume that surface 
M

l
l

1
  is m-smooth surface in 3R  

[13]. Construct in each domain lS  the rectangular grid h
lS  

with the steps ll
l nah /)(

1   and ll
l kbh /)(

2   and set on each 

element l
ijP  of the grid h

lS  a smaller grid with the steps 

mh ll /)(
1

)(
1   and mh ll /)(

2
)(

2  , Ml ,1 . Define 

analogously to (1), (2) in each grid domain 
ji

l
ij

h
l PS

,

,,    the 

system of Lagrangian finite elements  
mkmn

ji
ll

ij
llL 00

)()( )}({  , l
l S)( , Ml ,1 . 

Assign to the family ,h
lS  the grid )( ,

1

1
,


  h

l

M

l
lh S



  on 

the surface  , where )( ,1  l
ijl P  are the elements of the grid 

,h , Ml ,1 . Denote by lT  the set of nodes of the grid 

,h
lS , Ml ,1 , 

M

l
lTT

1
 . We number all elements of the set 

T  with the cross-cutting index Kt ,1 , 



M

l
lKK

1
, 

)1)(1( mkmnK lll  , and put in correspondence to each 
node px  of the grid ,h  the set of elements  

)}(:{ ,1

1

,,*   l
ijlp

M

l

h
l

l
ijp PxSPP 


  , 

element  
},1,,)({~ *,

,

,1 MlPPPP p
l
ij

ji

l
ijlp    , 

the set of indexes  
},1,)(:{ ,)(,1* MlPxPTtT h

l
l

tp
l

ijlp     , 
and function  
   




*
))(()(~

pTt
l

l
tp xLxL  , lx  , supp pp PxL ~)}(~{  , (6)  

mkmn
ji

ll
ij

ll
t

llLL 00
)()()()( )}({)(   . 

Denote by LN
Lr

~  the restriction operator from )(mH  

into the finite dimensional space LN
LV  and by lN

Lr
~  – its 

restriction to )( l
mH  , i.e.  

M
l

N
L

N
L

lL rr 1}~{~
 , )()(~ l

K
Ll

N
L vrxur ll  , (7) 

where lK
Lr  is the restriction operator from )( l

m SH  into the 

corresponding finite dimensional space lK
LV , Ml ,1 , and NL 

is the number of nodes in the grid ,h . 

The extraction operator LN
Lp~  from LN

LV  into the linear 

shell LN
LU  of the system LN

pp xL 1)}(~{  , )( mN
L HU L , 

introduce by formula  





L

LL
N

i
i

i
N

N
L

N
L xLuxp

1

)( )(~))(~( u , LL N
L

N
L Vu . (8) 

From Lemma 1 follows that i.e. approximations 
)~,~,( LLL N

L
N
L

N
L rpV  of the space )(mH  are convergent. 

Further from estimate (5) we obtain 
2

)(
)(222

)(

~~~





 


H

t
H

N
L

N
L uhCurpu

t
LL , (9) 

where 10  mt  , mt  , and lN
Lp  is a similar to (4) 

extension operator from lN
LV  into )( l

m SH , constant 0~
C  

does not depend on u and }{max )(
2

)(
11

ll
Ml

hhh


 . Thus, it is 

proved  
Lemma 2. There is a restriction operator 

LL N
L

mN
L VHr )(:~  such that approximations 

)~,~,( LLL N
L

N
L

N
L rpV  of the space )(mH  are convergent and 

valid the estimates (9). 
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III. COLLOCATION METHOD  

Let us denote GRG \' 3  and introduce in G  and 'G  the 
Sobolev spaces [13] 

}),(:)({)( 22 mGLvGLvGH m    , 

)'(GW m = }),'()1(:)'('{ 2
)1(2 2

mGLvrGDv   
,. 

where 0m , and 



3

1

2/12 )(
i

ixr , 
3

321 ),,( Rxxxx  . 

Consider the next boundary value problem: to find 
function  

:)'()({ 111
0, GWGHvHv mmm 

    (10) 

    }',,0)(,
int

GGxxvvv
ext

   

satisfying condition  

)(, 2/1  


mHffv .   (11) 
In [14] was proved  
Theorem 1. Problem (10)-(11) has one and only one 

solution.  
We will search a solution of the problem (10) - (11) in the 

form of simple layer potential  

',,)(
4
1)( GGxd

yx
yuxv y 


 


. 

The unknown potential density is determined from the 
equation  




 


xxfd
yx

yux y ),()(
4
1))(Αu(


. (12) 

Operator A is an isomorphism of )(sH  onto )(1 sH
[14]. Then from the Banach theorem follows the validity of 
inequalities  

)()()( 1    sss HsHHs uAuu  ,  (13) 
in which constants s  and s , ss  0 , does not depend 

on )( sHu .  
To simplify the presentation, we assume that for 

approximation of unknown potential density )( mHu , 
0m , of equation (10) a system of linearly independent 

functions 
1}{ ii  is chosen, NU  is a linear shell of the 

system N
ii 1}{  , N

m
N VHr )(: , NNN UVp :  are the 

restriction and extraction operators. Denote by NX  the set of 
pairwise different points belonging to the surface    

N
jjN xX 1}{  , jx , Nj ,1 , 

and introduce in )(1 mH  restriction operator 

N
m

N Hs  )(: 1  by formula 
)~()( jjN yffs     (14) 

in which 
},)(min)~(:)(~{~

)(
Nj

yy
jj Xyyfyfyyy

j



 ,    (15)  

}:{)(   jj yyyy , 

in particular 0))(,( * jyy   for arbitrary NXy * , 

jyy * , Nj ,1 . 

If )(Cf , then operator Ns  can be defined as usual  
)()( jjN yffs  , Nj Xy  , (16) 

i.e. jj yy ~ , Nj ,1 . It is easy to see that, with this choice of 

operator Ns , a system of linear algebraic equations  

fsNN
c
N uA , NN

c
N ApsA , NN Vu , (17) 

implements the collocation method of solving the equation 
(12). The set NX  is called a set of collocation points.  

Denote N
jjN yY 1}~{   and consider the system of 

functions  

j
j yx

xr ~
1)(


 , Nj Yy ~ , Nj ,1 . 

From the choice of the set NX  and conditions (15) follows 

that the functions of system N
jj xr 1)}({   are linearly 

independent [15].  
Define in )(L  the family of linear continuous 

functionals  




 xjj dxrxl )()()(  , )( L , Nj ,1 . 

Denote by )( jlKer  the zero subspace of functional jl  in 

)(L , i.e. }0)(:)({)(    jj lLlKer  and suppose 

that 
N

j
jN lKerK

1
)(


 . The degeneracy of matrix c

NA  is 

equivalent to the linear dependence of its rows or columns, 
that is, the existence of such sets NN

iiN R 1}{α  or 

NN
jjN R 1}{β , 0

1

2 


N

i
i , 0

1

2 


N

j
j , that  

 
 


N

i
xjii dxrx

1
0)())((  , Nj ,1 , (18) 

or  

 
 


N

j
xjii dxrx

1
0))()((  , Ni ,1 . (19) 

Implementation of equations (18), (19) is only possible if 
0NN UK  . From this follows sufficient conditions for the 

invertibility of matrix c
NA , which we formulate in the next 

statement.  
Lemma 3. Let us the system of linearly independent 

functions N
ii 1}{   is chosen for the approximate solution of 
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equation (12) and determined the set of collocation points 
NX  (and, consequently, the set NK  is defined). Then, if  

0NN UK  ,  (20) 

then the matrix c
NA  of the system of collocation equations 

(17) is non-degenerate for arbitrary N.  
A similar result is obtained if the restriction operator Ns  

is chosen in the form  

 
)(

)(
)(

1)(
jy

y
j

jN dyf
ymes

fs


  (21) 

and   




)()(
1)(

jy

y

j
j yx

d
ymes

xr


, Nj ,1 . 

It is obvious that under conditions of Lemma 3 the 
operator c

NA , where Ns  is defined according to (14)-(15) or 
(21), or in the case of )(Cf  according to (16), is stable.  

Consider a discrete analog of condition (20). Let us the 
quadrature formula  





N

j
jijjxi xrxAdxrx

1
)()()()(  ,  (22) 

jx , ij xx  , if ij  ,  
is used to calculate the integrals  




xi dxrx )()( , NUx )( , Ni ,1 , 

which is exact for integrals  



xdxx )()(  , NUxx )(),(  . 

Consider the system of functions  





N

k
k

i
ki xx

1

)( )()(  ,  (23) 

the coefficients )(i
k , Nik ,1,  , of which we define from N 

systems of linear algebraic equations  

)()(
1

)(
ji

N

k
jk

i
k xrx 


 , Nji ,1,  .  (24) 

Define the conditions under which the functions )(xi , 

Ni ,1 , are linearly independent. From (23) we obtain that   

0)()()(
1

)(

11
  

 

N

k
k

i
k

N

i
i

N

i
ii xcxc   

if and only if 

0)(

1




i
k

N

i
ic , Nk ,1 .  (25) 

Let us the set of colocation points  
N
jjN yX 1}{  is 

chosen in such a way that  
 ii yx0 , ji yxd  , Nji ,1,  , ij  , 

1
0




N
d

 , 

where N
jjx 1}{   are the nodes of quadrature formula (22). Then  





N

jii
jiii xrxr

,1
)()( , 

matrix N
jijiN xr 1,)}({ R  due to Hadamard condition is 

nondegenerate and from (24) we obtain that vectors 
N
j

j
kk 1

)( }{  α , Nk ,1 , are linearly independent. Hence, 

equality (25) holds if and only if 0ic , Ni ,1 , i.e. the 

functions of system N
ii x 1)}({   are linearly independent.  

Now, if the quadrature formula (22) is used to calculate 
the integrals in coefficients of matrix c

NA , instead of the 
system of collocation equations (14), we actually solve a 
system with matrix  

N
jixji

c
N dxx 1,})()({~



  A , 

where functions )(xi , Ni ,1 , are defined by formulas (23) 
and (24). The last matrix can be degenerate if and only if there 

exists a nonzero element N
N

i
ii Uxax  

1
)()(  , orthogonal 

to all )(xi , Ni ,1 , which is impossible, since the system 
N
ii x 1)}({   forms a basis in the space NU . 

Let us the system of Lagrangian finite elements of the 
form (6) is used to approximate the unknown potential density 

)( mHu  and 
LNU  is its linear shell. We choose the 

operators 
LL N

m
N VHr )(:~  and 

LLL NNN UVp :~  in the 
form (7) and (8) respectively and determine the restriction 
operator 

LL N
m

N Hs  )(: 1  in the form (14), (15). In 
this case, the system 

LLL NN
c
N fuA  , 

LLL NN
c
N pAr ~~A , fr

LL NN f , 

implements the collocation method for solution of equation 
(12). From Lax-Milgram lemma [16] follows that under 
conditions (20) matrix c

N L
A  is non-degenerate and, 

accordingly, the definition of operator 
LNq  in the form 

LLLL NNNN pAq uf ~  is correct. Given the left side of 
inequalities (13), the biectivity of mapping 

LLL NNN UVp :~ , the expressions for norms in the spaces 

LNV  and 
LN  in the case )( mHU , )(1  mHF  and 

equality uAPuAPQ
LLL NNN  , we obtain the validity of 

inequalities  

LN
LLLNL N

c
NVNm


 uAu   (26) 
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for arbitrary 
LL NN Vu , in which m  does not depend on 

LNu . Then from the inequalities (13) and (26), Lemmas 2, 3, 
and basic convergence theorem [17] we obtain the validity of 
following  

Theorem 2. For arbitrary )(1  mHf , m=0,1,…, the 

approximate solution L
NL

u  of equation (12) obtained by 

collocation method under approximation of unknown potential 
density by a system of functions constructed on the base of 
Lagrangian finite elements of m-th degree and the choice of 
collocation points that satisfies the condition (20) converges to 
its exact solution, and there is an estimate  

)()(
1

)/1(~








 






H
ttt

H
L
N fhCuu

tL
,    (27) 

where 10  mt  , mt  , and h is the maximum area of 
the grid element on  .  

IV. ERROR ESTIMATION OF APPROXIMATE SOLUTION OF THE 
DIRICHLET PROBLEM FOR THE LAPLACE EQUATION  

Denote  

',,
)(
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1)( GGxd

yx
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xv y
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NL
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, 

and estimate the modulus of value 
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1))()(( y

L
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yxx
yuyuxvxv
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',GGx , ,...1,0  
Let us  

      },~:~{\ 33  yyxRxRx  .  (28) 
Using Holder inequality and (24), we obtain  

           ,))()((
)(1

2 








L

L
N

L
N LL

uumesxvxv
x 




 (29) 

',GGx , ,...1,0  
Then from inequalities (27), (29) and Theorem 2 follow 

the validity of the next statement.  
Theorem 3. For arbitrary )(1  mHf , m=0,1,…, an 

approximate solution of the problem (10), (11) obtained by 
collocation method under approximation of unknown potential 
density by systems of functions constructed on the basis of 
Lagrangian finite elements of the m-th degree, converges to its 
exact solution, and there is an estimate  

,)/1())()(( )(1
00

*
1  







m

L H
m

m
L
N fhCxvxv

x 




  

',GGx , ,...1,0  

CONCLUSIONS  
The paper describes the conditions and evaluations of 

convergence of collocation method for solution of Fredholm 
integral equation of the first kind for the simple layer potential 
in case of closed boundary surface in a three-dimensional 

space. Approximation of potential density was performed 
using Lagrangian finite elements of various orders on 
rectangular grids constructed in the desired function definition 
domain. Estimations were obtained for the error of 
approximate solution of Dirichlet problem for Laplace 
equation that is equivalent to the integral equation for the 
simple layer potential. The approach proposed can be used to 
define convergence of collocation method for solving potential 
theory integral equations that are equivalent to the boundary 
value problems for equations of mathematical physics and 
other types of finite elements of various orders, constructed on 
both rectangular and triangular grids in desired potential 
density definition domain. 
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