The Migration of DDD-Oriented Application to
CQRS with Event Sourcing Software Architecture

Oleksandr Lytvynov

Faculty of Physics, Electronics and
Computer Systems
Oles Honchar Dnipro National
University
Dnipro, Ukraine
lytvynov@ffeks.dnu.edu.ua
ORCID: 0000-0001-7660-1353

Dmytro Hruzin

Faculty of Physics, Electronics and
Computer Systems
Oles Honchar Dnipro National
University
Dnipro, Ukraine
hruzin_dl@ffeks.dnu.edu.ua
ORCID: 0009-0004-8534-2559

Maksym Frolov

Faculty of Physics, Electronics and
Computer Systems
Oles Honchar Dnipro National
University
Dnipro, Ukraine
frolov_mo@ffeks.dnu.edu.ua
ORCID: 0009-0000-6624-6028

Mirpamis [Hpopmamiinoi Cucremu 3 ApXITEKTYpH
Domain Driven Design ra Apxitektypy CQRS Ta
Event Sourcing

Onexcanap JIutBuHOB

®DaxynpTeT Pi3UKH, EISKTPOHIKH Ta
KOMII'FOTEPHHUX CHCTEM
JHIMpOBCHKUI HALlIOHATTHHUN
yHiBepcuret imeHi Onecs ['orgapa
Huinpo, Ykpaina
lytvynov@ffeks.dnu.edu.ua
ORCID: 0000-0001-7660-1353

Anomayia—Crtatrsi po3risaae mpodgemy Mirpamii
JI0/1aTKiB, 30KpeMa THX, 110 BUKOPHCTOBYIOTh apXiTeKTypHHIi
miaxix Domain-Driven Design, 1o napagurmu Command Query
Responsibility Segregation 3 Event Sourcing. /loBro icuyroui
CHCTEMH YaCTO CTHKAIOThCS 3 NMpodJjeMaMH, NMOB'S3aHUMH 3
HETHYYKO0I0, 3aCTapijIol0 apXiTeKTypoIo Ta 3a/1e:KHOCTAMH, 110
NPU3BOAATHL 10 30iNbIIeHHS] BUTPAT HAa 00CIYroBYyBaHHA. Y
podoTi po3rasnaoTbes nepesaru DDD ta npononyersess CQRS
SIK 5KUTTE€31aTHA AJIbTEPHATHBA, 3 AKIEHTOM Ha MOKPaIleHHi
NPOAYKTUBHOCTI Ta MacmiTadoBaHocTi. OCHOBHOIO MeTOIO
podoTH € oniHka Oe3ne4yHOro mWUISAXy mirpauii npoexry 3 DDD
apxitektyporo Ha apxitrektypy CQRS Ta Event Sourcing, a
TAKO’K BH3HAYEHHs NOPOKHbLOI KapTh Mirpaumii. Y crarri
MPOBOAMTHCS €KCIEPUMEHT, B IKOMY 3AiliCHIOEThCSl Mirpauis
TECTOBOI0 MPOEKTY, OLiHIOIOTHCH Yac, 3yCHJLISI Ta Pe3yJIbTaTH
Mmirpamii. MeToaos0risi JOCTII:KEHHS] BKJIKYAE OUIHKY
CKJIAJHOCTI 32 /I0MOMOrol0 METPUKH IMKJIOMATHYHOL
ckjaagHocti MakKelioa Ta omiHKy NpoayKTHBHOCTI Yepe3 yac
BHKOHAHHS METOJiB CHCTEMH.

Abstract—The work addresses the issue of migrating
applications, particularly those following the Domain-Driven
Design architecture, to the Command Query Responsibility
Segregation paradigm with Event Sourcing. The paper
examines the advantages of DDD and proposes CQRS as a
viable alternative, focusing on improving productivity and
scalability. The main objective of the work is to assess a secure
path for migrating a project from DDD architecture to the
CQRS and Event Sourcing architecture and to determine the
migration roadmap. The experiment is conducted in which

Hmutpo I'pazin
®DaxynpTeT Pi3UKH, EITSKTPOHIKH Ta
KOMIT FOTEPHHUX CHCTEM
JIHIIpOBCHKHUI HAliOHATTBHUN
yHiBepcuteT imeHi Onecs ['oHuapa
Huinpo, Ykpaina
hruzin_dl@ffeks.dnu.edu.ua
ORCID: 0009-0004-8534-2559

Makcum @ponos

®DaxynpTeT (Pi3UKH, ENEKTPOHIKHN Ta
KOMII'IOTEPHHX CHCTEM
JHIMpoBCHKHN HALlIOHATTHHUN
yHiBepcuret imeHi Onecs ['oHgapa
Huinpo, Ykpaina
frolov_mo@ffeks.dnu.edu.ua
ORCID: 0009-0000-6624-6028

migration of a test project is performed, evaluating the time,
effort, and results of the migration. The research methodology
includes evaluating complexity using McCabe's Cyclomatic
Complexity metric and assessing performance through the
execution time of system methods. (Abstract)

Keywords—Domain-Driven Design, CQRS, Event Sourcing,
Architecture migration (keywords)

Knrouosi cnosa: Jlomenno-opienmosanuit /Juzain, CQORS,
Event Sourcing, Mizpauia apximexmypu.

l. INTRODUCTION

In the market, there is a vast number of applications.
These are complex information systems that still perform
their functions but over time have lost flexibility, and possess
outdated architecture, or dependencies. This leads to an
increase in the complexity and cost of maintaining such
systems. Many of these applications adopt the Domain-
Driven Design (DDD) architecture [1][2]. DDD revolves
around the concept of bounded contexts [3], which define
clear boundaries within a system and promote modular
design and clear separation of concerns, allowing different
parts of the system to operate independently within their
designated contexts. Within these bounded contexts, system
entities are identified and organised into aggregates or
aggregate roots, which represent clusters of associated
objects treated as a single unit for data manipulation and
consistency.

19

One alternative, when it comes to the architecture of
complex information systems, is Command Query
Responsibility Segregation (CQRS) with Event Sourcing
(ES) [4][5]. ES implies the absence of a classical database,
and data is stored in the form of events that represent changes
to the system's state. Events are stored in an Event Store,
which serves as the source of truth for the system. The CQRS
architecture provides an innovative methodological approach
to optimise command and query processing in applications,
contributing to increased productivity, scalability, and
modularity of systems.

The advantages of the CQRS with ES architecture
compared to DDD [6] include improved performance for read
and write requests, as well as better flexibility and scalability,
and reduced risk of conflicts when making changes. Another
significant advantage is the instant storage of all events,
enabling the system'’s state to be restored to any point in time
from its creation to the present.

Il. TASK DEFINITION

For modern information systems, issues of performance,
scalability, and ease of software maintenance are crucial. For
some systems using DDD architecture, a need arises to store
events for monitoring or taking some business solutions, or
enhance flexibility, making the CQRS with ES architecture
more suitable for the system. However, alongside the
advantages, there are practical challenges in its
implementation, such as an increase in the number of classes
and configuration complexity. Therefore, researching the
practical aspects of applying the CQRS architecture for
developing a modern information system, analysing and
evaluating the pros and cons of this approach, remains
relevant.

The objective of this work is to assess a secure path for
migrating a complex information system from DDD to the
CQRS with ES architecture. Additionally, it involves
conducting an experiment to migrate the architecture of a test
project and provides an assessment of the time and results of
the migration for a test typical project.

I1l. LITERATURE REVIEW

The migration of a complex information system to
another architecture is not a simple task and involves several
stages. There are various strategies for system replacement,
such as Cold Turkey, Chicken Little [7]. Cold Turkey
involves rewriting a legacy information system from scratch,
while Chicken Little migration assumes small incremental
steps until the desired long-term objective is reached.
Another approach is Butterfly [8], which focuses on the
migration of legacy data in a mission-critical environment.
The data migration process is one of the most important and
complex steps in system migration. One approach to address
this task is the derivation of event logs [9]. This approach
involves analysing the system and implementing an events
logging module. Events are subsequently used to synchronise
data between the old and new systems.

In addition to system replacement strategies, Salvatierra
G. [10] considers a number of direct migration approaches,
such as Screen Scraping, Sneed, Canfora, COB2WEB, and
others.

V. MATERIALS AND METHODS

Let us describe the migration process of a typical
information system from DDD to CQRS with ES
architecture.

The first step is to make infrastructural changes,
specifically adding the Command Bus, the Event Store, and
the Event Bus. After implementing these modules, the
controller level and service level (domain) need to be adapted
to work with the new modules. At the service level, in
accordance with the CQRS architecture, it is assumed that the
controller receives a request from an external client, creates a
command, and sends it to the Command Bus. Existing
controllers need to be updated in the following way. Instead
of directly calling domain-level services, controllers
responsible for write operations should create corresponding
commands and pass them to the Command Bus. The domain
services then should be divided and transformed into
command handlers and query handlers. Command handlers
should subscribe to the Command Bus and process the
corresponding commands. The logic for read operations is
moved into query handlers. The controllers responsible for
performing queries continue to call these methods to retrieve
data from query handlers and pass it to the client.

In the next stage, databases for denormalised data views,
which are used by query handlers (projections), are described
and created. Having ready projections allows creating and
testing event handlers, which, upon receiving corresponding
events from the event bus, update the projections.

All the previous steps only involved changes in the code
and did not affect the system's data. The next step is migrating
data from the normalised database to the Event Store and
shifting the focus of source-of-truth. During a maintenance
break, a database dump is made, and the system is updated to
a version which saves events to the Event Store alongside
with updating the legacy database. After launching the
system, based on the available data in the dump, events of
creating existing entities with a timestamp equal to the
creation of a record in the database are migrated to the event
store. After synchronisation, another maintenance break will
be required. Projection databases are filled with data from the
Event store using the event replay algorithm, and the system
is updated to a version with enabled event handlers that
update projections. The last stage of system migration is
updating the logic of query handlers to work with projections
instead of the legacy database.

V. EXPERIMENT AND DISCUSSION

The Task Tracking System, which is a classic sample
project for studying the design and implementation aspects of
systems with a complex application domain is chosen as a
typical project. The conventional and upgraded solutions are
implemented and the source code for the conducted
experiment is hosted in an open-source repository on GitHub
and is accessible via the link [11].

The development of a typical system took 12 full-time
days. The migration lasted another 16 days and increased the
number of classes in the business logic from 47 to 213 and
required a significant portion of the expended time (Figure
1). At first glance, it may seem that this increase complicates
the system. However, the reason for this increase is an
improved distribution of responsibilities among system
components, which enhances the modularity of the system,

20

its adaptability to changes, and testability, and ensures its
ongoing support and development.

Amount of classes

Days

Fig. 1 — Number of classes in the system: Development and migration.

McCabe's Cyclomatic Complexity metric approach [12]
was employed to evaluate the code complexity of systems.
Despite the increase in the lines of code (3101 vs. 4620) and
the addition of new modules, the overall code complexity of
the system after migration became even lower (534 vs. 522).

The analysis of the research results indicates a significant
impact of implementing CQRS with ES architecture on the
system's efficiency. Some methods, which had comparatively
high execution time in the conventional system,
demonstrated a noticeable reduction of up to 7 times (281 to
43 ms) after the introduction of the architecture. On the other
hand, some methods with low execution time nearly doubled
(28 to 48 ms).

ACKNOWLEDGMENT

The experiment was conducted on the DBB Software
company's [13] proprietary platform, which provided the
necessary infrastructure and tools for data collection and
analysis.

REFERENCES

[1] Evans E. Domain-Driven Design: Tackling Complexity in the Heart of
Software, 2004. ISBN: 978-0321125217.

[2] Vernon V. Implementing Domain-Driven Design, 2013. ISBN: 978-
0321834577.

[3] Fowler M. Bounded Context, 2014. URL:
https://martinfowler.com/bliki/BoundedContext.html.

[4] Young G. CQRS Documents by Greg Young, 2010. Pages: 50-52.
URL: https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf.

[5] Betts D. Dominguez J. Melnik G. Simonazzi F. Subramanian M.
Young G. Exploring CQRS and Event Sourcing: A journey into high
scalability, availability, and maintainability with Windows Azure,
2013. ISBN: 978-1621140160.

[6] Kenneth T. Introduction to Domain Driven Design, CQRS and Event
Sourcing, 2013. URL: https://www.kenneth-
truyers.net/2013/12/05/introduction-to-domain-driven-design-cqrs-
and-event-sourcing/.

[7] Brodie M. L. Stonebraker M. Ai S. DARWIN: On the Incremental
Migration of Legacy Information Systems, 1995.

[8] WuB. Lawless D. Bisbal J. O’Sullivan D. The Butterfly Methodology:
a gateway-free approach for migrating legacy information systems,
1997. DOI: 10.1109/ICECCS.1997.622311.

[9] Breitmayer M. Arnold L. La Rocca S. Reichert M. Deriving Event
Logs from Legacy Software Systems, 2023. DOI: 10.1007/978-3-031-
27815-0_30.

[10] Salvatierra G. Mateos C. Crasso M. Legacy System Migration
Approaches, 2013. DOI: 10.1109/TLA.2013.6533975.

[11] Frolov M. TaskTrackingSystem repository on GitHub, 2023.

[12] McCabe T. J. A Complexity Measure, 1976. DOI:
10.1109/TSE.1976.233837.

[13] DBB Software's official company site URL: https://dbbsoftware.com/.

21

