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Abstract — Machine learning has gained popularity for image 

recognition on edge devices. This study evaluates the performance 

of three devices, Nvidia Jetson Nano, Raspberry Pi 4 Model B, and 

Raspberry Pi 5 at accuracy, latency, and other metrics. The 

proprietary neural image recognition network is installed on each 

device, and their activity is analyzed. The study identifies the pros 

and cons of different image recognition methods. The various image 

recognition methods' advantages and disadvantages are identified. 

Анотація — Машинне навчання на мобільних пристроях 

стало дуже популярним для розпізнавання зображень. Описано 

продуктивність при вимірюванні точності, затримки та інших 

показників на Nvidia Jetson Nano, Raspberry Pi 4 Model B і 

Raspberry Pi 5. Власна нейронна мережа для розпізнавання 

зображень установлена на кожному з цих трьох пристроїв. 

Проведений аналіз її діяльності. Визначено переваги та 

недоліки різних методів розпізнавання зображень.  
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Raspberry Pi  
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I. INTRODUCTION 

Machine Learning tasks on edge devices have become very 
popular in recent years. There are a lot of developers that create 
or use existing models on these platforms. Single-board 
microcomputers, such as Raspberry Pi, gained popularity due to 
their efficiency, affordability, and power, and are used for both 
production and education. Deep Neural Networks (DNNs) are 
widely used for different tasks now. However, they can need a 
lot of memory and computation resources since edge devices 
have their constraints - limited memory and resources, so 

different optimization techniques are used to meet these 
constraints. There are some papers aiming at 
evaluating performance lot that use different edge devices, 
frameworks, and models. Such architectures of neural networks 
do not make it possible to realize image recognition with 
sufficient speed. In 2018 Xingzhou Zhang et al. [1] compared 
some of the at that time best ML frameworks for edge devices, 
such as Tensorflow, Caffe2, MXNet, PyTorch, and Tensorflow 
Lite. This work makes recommendations on which framework to 
choose for your needs and the platform to use. In 
2021 Stephan Patrick Baller et al. [2] presented their benchmark 
for measuring inference time, power consumption, and accuracy, 
called DeepEdgeBench. They compared the performance of four 
SoCs: Asus Tinker Edge R, Raspberry Pi4, Google Coral Dev 
Board, and Nvidia Jetson Nano. One microcontroller: Arduino. 
Nano 33 BLE, using only CPU and ML Accelerators. In their 
case Nvidia Jetson Nano with GPU, and Google Coral Dev 
Board with Edge TPU. 

II. NETWORK OPERATION PRINCIPLES FOR IMAGE RECOGNITION 

ON MOBILE PLATFORMS 

A benchmarking tool for measuring the performance of Deep 
Learning models on single-board microcomputers with ARM 
architecture is described in this article. The supported devices are 
Raspberry Pi 4 Model B [3], Raspberry Pi 5 [4, 6], and Nvidia 
Jetson Nano [5]. Also, the benchmark can run inference using the 
following frameworks: PyTorch, ONNX, TensorRT, and 
Tensor-Flow Lite with or without the full-integer quantization 
and delegate usage. The frameworks are tools, libraries, or 
interfaces used to help developers build their models or take 
existing ones, train, use, and deploy them.  
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TensorFlow is a framework for building and deploying 
models developed for the Google Brain team. It has an ecosystem 
of tools that will make it easy to create solutions for different 
needs. TensorFlow Lite is an open-source library for machine 
learning models on mobile deploy, embedded, and edge devices. 
It was released in 2017 and developed by the Google Brain team. 
In order to do this models built with TensorFlow are converted 
into TensorFlow Lite models. It is represented in FlatBuffers 
format that are smaller and more efficient. PyTorch is an ML 
framework for building, training, and deploying deep learning 
models developed by Facebook AI Research lab. ONNX 
Runtime is a cross-platform inference engine for ONNX (Open 
Neural Network Exchange) models developed in Microsoft. It is 
designed to accelerate machine learning models across different 
platforms and devices. It can used with models for PyTorch, 
TensorFlow/Keras, TFLite, scikit-learn, and other frameworks. 
TensorRT is a deep learning high-performance optimizer and 
runtime library developed by NVIDIA. It is 
designed specifically for NVIDIA GPUs to accelerate deep 
learning inference. Applications using TensorRT have 
significant improvements in inference speed compared to CPU-
only devices. Different optimizations are used, such as 
quantization, layer and tensor fusion, kernel tuning, and others 
on NVIDIA GPUs. 

III. LEARNING THE IMAGE RECOGNITION MODELS, DATA, AND 

LEARNING PROCESS PARAMETERS 

The two models cover the whole supported range. 
Classification and regression for this image recognition 
experiment were used. We chose: ResNet50 [7] - object 
classification model trained on ImageNet dataset. It takes a 
224x225 RGB image as input and classifies it as one of the 1000 
available classes; MobileNetV2 [8] - this is also an object 
classification model that was trained on the ImageNet dataset. It 
has the same input and output as ResNet50. However, it 
is smaller in cost of minor accuracy loss, so it is suitable for edge 
devices with limited resources.  

The latency and accuracy are in the best interest of developers 
while building and testing their models. Latency (or inference 
time) is the time it takes for a model to make predictions based 
on input data. A time module in Python measures it. Fig.1 
demonstrates the measured latency for all devices and 
frameworks using the ResNet50 model.  

 

FIG.I.  MEASURED LATENCY FOR ALL DEVICES AND FRAMEWORKS USING 

RESNET50 MODEL 

Fig.2 demonstrates of the measured latency for all devices 
and frameworks using MobileNetV2 model.  

 

FIG.2.  MEASURED LATENCY FOR ALL DEVICES AND FRAMEWORKS USING 

MOBILENETV2 MODEL 

Accuracy - ACC [9] - calculated (1). It ranges from 0 to 1 and 
then is multiplied by 100 to get a percentage (1).  

  (1) 

Where  

- TP - predicted elements as positive and are positive; 

- FP - predicted elements as positive but are negative; 

- TN - predicted elements as negative and are negative; 

- FN - predicted elements as negative but are positive.  

Accuracy of the Classification models ResNet50 and 
MobileNetV2 were measured. There is no loss in accuracy when 
converting between PyTorch, ONNX, TensorRT, and 
TensorFlow Lite without any optimizations. However, it has a 
small accuracy drop if using full-integer quantization, which is 
justified by latency improvements. 

IV. LEARNING RESULTS 

The best performance for CPU-only inference has 
TensorFlow Lite with ARMNN usage. It is twice as good as 
running the same model without a delegate. ONNX performance 
is also really good and close to ARMNN, even 
without any optimizations. PyTorch has the worst latency, 
which is expected. It is not optimized for running on edge 
devices. Raspberry Pi 5 results are much better than Raspberry 
Pi 4. It is because of better CPU and RAM speed. 

CONCLUSION 

The test results of the trained models are satisfactory, 
although they are far from real-time recognition. It can be 
considered an improvement of image recognition systems, which 
have become a fast and fairly accurate solution for working on 
less powerful platforms. 
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