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Abstract — Machine learning has gained popularity for image
recognition on edge devices. This study evaluates the performance
of three devices, Nvidia Jetson Nano, Raspberry Pi 4 Model B, and
Raspberry Pi 5 at accuracy, latency, and other metrics. The
proprietary neural image recognition network is installed on each
device, and their activity is analyzed. The study identifies the pros
and cons of different image recognition methods. The various image
recognition methods' advantages and disadvantages are identified.

Anomauyia — MallMHHe HABYAHHSA HA MOOIIBHHX NPHCTPOSX
€TaJI0 AyKe MOMyIAPHUM /15 po3Ni3HaBaHHs 300pakeHb. OnHucaHo
MPOAYKTHBHICTH NPH BUMIPIOBAHHI TOYHOCTI, 3aTPUMKH Ta iHIIHX
noka3HukiB Ha Nvidia Jetson Nano, Raspberry Pi 4 Model B i
Raspberry Pi 5. BiacHa HeilipoHHa Mepexka A5 po3mi3HABAHHSA
300pakeHb YCTAaHOBJIEHAa Ha KOKHOMY 3 IIHX TPbOX NMPHCTPOIB.
IIpoBenenunii ananiz ii gisabHocTi. BuU3HAvYeHO mepeBaru Ta
HeJOJIiKH Pi3HHX MeTOAiB po3MiZHABaHHS 300paKeHb.
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. INTRODUCTION

Machine Learning tasks on edge devices have become very
popular in recent years. There are a lot of developers that create
or use existing models on these platforms. Single-board
microcomputers, such as Raspberry Pi, gained popularity due to
their efficiency, affordability, and power, and are used for both
production and education. Deep Neural Networks (DNNs) are
widely used for different tasks now. However, they can need a
lot of memory and computation resources since edge devices
have their constraints - limited memory and resources, so
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different optimization techniques are used to meet these
constraints. There are  some papers aiming at
evaluating performance lot that use different edge devices,
frameworks, and models. Such architectures of neural networks
do not make it possible to realize image recognition with
sufficient speed. In 2018 Xingzhou Zhang et al. [1] compared
some of the at that time best ML frameworks for edge devices,
such as Tensorflow, Caffe2, MXNet, PyTorch, and Tensorflow
Lite. This work makes recommendations on which framework to
choose for your needs and the platform to use. In
2021 Stephan Patrick Baller et al. [2] presented their benchmark
for measuring inference time, power consumption, and accuracy,
called DeepEdgeBench. They compared the performance of four
SoCs: Asus Tinker Edge R, Raspberry Pi4, Google Coral Dev
Board, and Nvidia Jetson Nano. One microcontroller: Arduino.
Nano 33 BLE, using only CPU and ML Accelerators. In their
case Nvidia Jetson Nano with GPU, and Google Coral Dev
Board with Edge TPU.

Il. NETWORK OPERATION PRINCIPLES FOR IMAGE RECOGNITION
ON MOBILE PLATFORMS

A benchmarking tool for measuring the performance of Deep
Learning models on single-board microcomputers with ARM
architecture is described in this article. The supported devices are
Raspberry Pi 4 Model B [3], Raspberry Pi 5 [4, 6], and Nvidia
Jetson Nano [5]. Also, the benchmark can run inference using the
following frameworks: PyTorch, ONNX, TensorRT, and
Tensor-Flow Lite with or without the full-integer quantization
and delegate usage. The frameworks are tools, libraries, or
interfaces used to help developers build their models or take
existing ones, train, use, and deploy them.
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TensorFlow is a framework for building and deploying
models developed for the Google Brain team. It has an ecosystem
of tools that will make it easy to create solutions for different
needs. TensorFlow Lite is an open-source library for machine
learning models on mobile deploy, embedded, and edge devices.
It was released in 2017 and developed by the Google Brain team.
In order to do this models built with TensorFlow are converted
into TensorFlow Lite models. It is represented in FlatBuffers
format that are smaller and more efficient. PyTorch is an ML
framework for building, training, and deploying deep learning
models developed by Facebook Al Research lab. ONNX
Runtime is a cross-platform inference engine for ONNX (Open
Neural Network Exchange) models developed in Microsoft. It is
designed to accelerate machine learning models across different
platforms and devices. It can used with models for PyTorch,
TensorFlow/Keras, TFLite, scikit-learn, and other frameworks.
TensorRT is a deep learning high-performance optimizer and
runtime library developed by NVIDIA. Itis
designed specifically for NVIDIA GPUs to accelerate deep
learning inference. Applications using TensorRT have
significant improvements in inference speed compared to CPU-
only devices. Different optimizations are used, such as
quantization, layer and tensor fusion, kernel tuning, and others
on NVIDIA GPUs.

I11. LEARNING THE IMAGE RECOGNITION MODELS, DATA, AND
LEARNING PROCESS PARAMETERS

The two models cover the whole supported range.
Classification and regression for this image recognition
experiment were used. We chose: ResNet50 [7] object
classification model trained on ImageNet dataset. It takes a
224x225 RGB image as input and classifies it as one of the 1000
available classes; MobileNetV2 [8] - this is also an object
classification model that was trained on the ImageNet dataset. It
has the same input and output as ResNet50. However, it
is smaller in cost of minor accuracy loss, so it is suitable for edge
devices with limited resources.

The latency and accuracy are in the best interest of developers
while building and testing their models. Latency (or inference
time) is the time it takes for a model to make predictions based
on input data. A time module in Python measures it. Fig.1
demonstrates the measured latency for all devices and
frameworks using the ResNet50 model.
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Fig.2 demonstrates of the measured latency for all devices
and frameworks using MobileNetV2 model.
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Accuracy - ACC [9] - calculated (1). It ranges from 0 to 1 and
then is multiplied by 100 to get a percentage (1).

TP + TN
TP + TN + EN + FP

ACC =
1)

Where

- TP - predicted elements as positive and are positive;

- FP - predicted elements as positive but are negative;

- TN - predicted elements as negative and are negative;

- FN - predicted elements as negative but are positive.

Accuracy of the Classification models ResNet50 and
MobileNetV2 were measured. There is no loss in accuracy when
converting between PyTorch, ONNX, TensorRT, and
TensorFlow Lite without any optimizations. However, it has a
small accuracy drop if using full-integer quantization, which is
justified by latency improvements.

IV. LEARNING RESULTS

The best performance for CPU-only inference has
TensorFlow Lite with ARMNN usage. It is twice as good as
running the same model without a delegate. ONNX performance
is alsoreallygoodand close to ARMNN, even
without any optimizations. PyTorch has the worst latency,
which is expected. Itis not optimized for running on edge
devices. Raspberry Pi 5 results are much better than Raspberry
Pi 4. It is because of better CPU and RAM speed.

CONCLUSION

The test results of the trained models are satisfactory,
although they are far from real-time recognition. It can be
considered an improvement of image recognition systems, which
have become a fast and fairly accurate solution for working on
less powerful platforms.
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