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Abstract — A one-dimensional mathematical model for
temperature and force induced deformation of flexoelectric non-
uniform microwires is derived from the Hamilton’s variation
principle. To this end, a reformulated theory for isotropic dielect-
rics with flexoelectricity is employed. This non-classical theory
incorporates the strain gradients, electric quadrupoles and
flexoelectric effect. In order to solve the differential equations with
variable coefficients, the differential quadrature method (DQM)
is adopted. The effect of small-scale factor, flexoelectric material
properties, microwire geometry and temperature changes on the
coupled fields in stretched rods are studied.

Anomayis — Ipynryounch Ha Bapianiiinomy npunnumi Ia-
MiJbTOHA, OTPUMAHO OJHOBHMIPHY MaTeMaTH4YHY Mofelb (IeK-
COeJIEKTPHYHOI0 HEOAHOPIAHOr0 MIiKPOAPOTY i/ Ai€I0 TENI0BOr0
Ta MEXaHIYHOI0 HaBaHTa)KeHHsA. 3 Li€l0 MeTO BHKOPHCTAHO
MoaudikoBaHy Teopilo s i30TPONHUX JieneKTPHUKIB i3 ¢uexco-
ejiekTpuKom. Llsi Hek1acu4yHa Teopisi BK/IOUYA€E rpagieHTH aedop-
Mauiif, eJeKTpU4YHi KBaapynoJi ii guiexcoeseKTpHYHHIl edeKT.
Jns 3HAaX0/X:KeHHSI PO3B’A3KY Au(epeHIiaIbHUX PiBHAHB 3i 3MiH-
HUMH KoedilicHTaMH BHUKOpHCTaHO TudepeHmiaabHuii KBaapa-
TypHuii MeToa (DQM). BuBYeHO BIUINB MiKPOCTPYKTYPH, dJiek-
COeJIEKTPHYHNX BJIACTHBOCTEH MaTepianay, npodinwo mikpoapoTy
il 3MiHU TeMnepaTypH Ha 3B'sI3aHi MO/ B PO3TATHYTUX CTPHMIKHSIX.
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I. INTRODUCTION

Over the past few decades, various studies have reported about
the importance of coupling effects at the micro-/nanoscale.
Although some results regarding the influence of temperature field
on the elastic properties of solids at the nanoscale were obtained
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previously, there are no works on static electro-thermo-elastic
problems in non-uniform isotropic rods with flexoelectricity.
Inspired by this, the behavior of flexoelectric microwires with non-
uniform cross section is investigated in this work.

Il. PROBLEM FORMULATION

Let us study deformation of a non-uniform isotropic flexo-
electric microwire with length L and cross-sectional area A(x),
orientated along the x-axis. The wire is fixed at the end x = 0 with
its side length a and subjected to a stretched load Fo at its free
end with side length b. Two edges of the wire are held at a
constant but different temperature T, and T.= T,+AT. The

side surfaces of the slender wire are heat-insulated and free of
traction and surface charges. In order to study the influence of
non-uniform profile on electroelastic behavior of microwire, we

consider the special case: A(x) = A, (L—cx/L)”, where Aq is the
cross-sectional area at x =0, ¢ =1-b/a, and 0 <c < 1. Here,
A, =a’/4 for non-uniform wire with a square cross section and

A, = na’/4 for wire with a circular cross section.

In order to capture the micro-stiffness and flexoelectric
properties of the dielectrics, we employ the reformulated theory
for isotropic dielectrics with flexoelectric effect [1]. Within this
theory, the linear constitutive equations can be written as:

o; =k,€, +2ne) — £,8,Q,, —21,Q, —(3k+2n) 5,0,
T|(Jlk) = 2H|12ﬂi(,-1|3 v Bi= ZHIOZ'Yi +( f,+ 2f2/3) P,
my =20 (17 + 915 /5) x; +2u(12 =913 /5) s + 2,8, R
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where, o, denotes the Cauchy stress, ¢ is the strain, i) , p,

, and m{ are the higher-order stresses, which are the work-
conjugate to the deviatoric stretch gradient nfjlk) the dilatation
gradient v,, and the deviatoric rotation gradient y;, respec-
tively, E; is the local electric field, V; represents the higher-
order local electric field, 6 =T —T, is the temperature change,
P denotes the electric polarization, Q; =R, e, is the
permutation symbol. Here, «, pu, o, and o are the classical
material moduli, 1,, 1,1, B,, B,, B;, &, f, and f, are the

higher-order material constants [1]. The components of the
strain tensor and the higher-order metrics are:

&ij :(“i,i +U,-,i)/2, &) =& =8y /3, Vi =€
X = eipqsqu,p ) nl(Jlk) = (Sjk,i +&; Tk )/3_[5”' (gmm,k + 28mk,m)

+8 4 (Emmi + 2801 m )+ 4 (Epm  + 280 )J/lS :
where u; is the component of mechanical displacement.
For considered boundary problem, a displacement and
polarization vectors are: u = (u,(x),0,0), P =(P,(x),0,0). For

stationary problems, the heat equation is not coupled with the
rest equations governed the electro-elastic behavior of wire.
Thus, the formulated problem can be solved consecutively.
From the heat conduction equation and thermal boundary
conditions 6(0)=0 and 6(L)=AT, we get the following

temperature distribution for elastic wires with varying cross
section: O(X):AT(Cfl—l)[(l—CX/L)il—l]. Then, from the

Hamilton’s variational formulation, the governing linear

system of differential equations can be obtained as:

1
{EAuva -5 BrA0- AR, —2ul?(Au,, ), — f (AP, )} =0,

1
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X

[ A(-€00, +P, )]'X =0. (1)
Here, ¢ is the electric potential, &, = 8.854x1072 C%/(N m?),
E=k+4p/3, 1° =(217 +91) /5, B> =B +B; +Pp5, f=f1+ 2f,.

For analyzing of microwire behavior, we get a set of coupled
differential equations (1) with variable coefficients.
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I11. NUMERICAL RESULTS AND CONCLUSIONS

In order to solve the formulated boundary-value problem,
the DQM is adopted [2]. In this method, the n-order derivative
of a function f(x) at a grid point x; is considered as the weighted
linear summation of the function values along that coordinate
direction:

d"f(x)
=B f(x,),
an ; ] ( J)
where, N denotes the total number of discrete points distributed
along the axial direction and Biﬁn) is the n-order weighting

coefficients matrix. The grid points are adopted as the Cheby-
shev—-Gauss—Lobatto points. Note that the used discretization
technique leads to a set of ordinary equations from which the

values u (%), P,(x),and ¢(x) (i=12,..N) can be found.

The solution to the formulated boundary-value problem is
founded for N = 100. Using a MATLAB Software, numerical
calculations are carried out for polyvinylidene difluoride with
the following material properties: E = 3.7 GPa, p=1.2 GPa,
a =1.38x10°N m?/C?, ar = 7.45%x107° 1/K, f=200V,
=1 pm and B =2 um. The tensile load is Fo =10 puN, the
temperature change is set to be 2K.
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Fig. 1. The distributions of axial strain ¢, and electric potential diffe-
rence @—(0) in non-uniform wire (L = 12 um, a =2 pum, b = 0.8 pum)
with square and circular cross sections (the blue and black lines,
respectively) under complex effect of temperature and tensile loads.

The results of numerical calculations demonstrate the follo-
wing. The disturbance of electric field in an isotropic wire
appears due to the influence of both the varying rod profile and
flexoelectric effect. The geometrical parameter ¢ that denotes the
taper ratio has a remarkable influence on the coupled electro-
mechanical fields in the wire. The axial strain, displacement,
polarization and absolute value of electric potential difference tend
to increase with the increase of the taper ratio c. Axial strain and
electric potential are sensitive to the sign and magnitude of
temperature variation. With the increase of AT , the wire
deformation and electric potential difference increases accor-
dingly. The effect of rod profile more pronounced for the wires
with circular cross section. The strain at left wire end tends to
increase while the strain of right end of the rod tends to decrease
when taking the effect of micro-stiffness into account.
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