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Анотація—Мета цієї публікації – дослідити можливості 

колективів безкомпасних автоматів у дослідженні 

драбинних графів. Кожен граф є анонімним, тобто вершини 

графа не мають ідентифікуючих позначок, і, таким чином, 

всі вершини одного степеня здаються автоматам 

ідентичними. Автомати не розрізняють вершини на основі 

їх координат або напрямку (це означає, що автомати не 

мають компаса). Розглядаються колективи, що 

складаються з керуючого автомата і декількох камінчиків, 

які є автоматами найпростішої форми, положення яких 

повністю визначаються керуючим автоматом. 

Представлено мінімальні колективи, які досліджують 

драбинні графи та деякі їх підграфи. 

Abstract— The objective of this note is to examine the 

capabilities of collectives of compassless automata in exploring 

ladder graphs. Each graph is anonymous, meaning the vertices 

of the graph lack identifying labels, and thus, all vertices of the 

same degree appear identical to the automata. The automata do 

not distinguish between vertices based on their coordinates or 

direction (which means the automata have no compass). We 

considered collectives consisting of a controlling automaton and 

some pebbles, which are automata of the simplest form, whose 

positions are entirely determined by the controlling automaton. 

We have presented minimal collectives that explore ladder 

graphs and some of their subgraphs. 

Ключові слова—драбинний граф, колектив автоматів, 

дослідження графа 
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I. INTRODUCTION 

Automata walking on graphs are a mathematical 
formalization of autonomous mobile agents with limited 
memory operating in discrete environments. Studies 
investigating the behavior of such automata in finite and 
infinite labyrinths – embedded directed graphs of a specific 
form – have emerged and are rapidly evolving within this 
framework [1, 2, 3]. This research has diverse applications, 
including image analysis [4, 5] and mobile robotics 

navigation [6]. The assumption that automata navigating 
labyrinths can discern directions, i.e., possess a compass, is 
fundamental to the findings concerning automata and 
labyrinths [7, 8]. 

The aim of this note is to investigate the behavior of 
collectives of compassless automata on ladder graphs. Each 
automaton receives information about the presence or 
absence of other automata at the neighboring vertices when 
operating on the graph. Based on this input, it moves to one 
of these vertices. The automata do not differentiate between 
the directions or positions of the vertices, but they can 
distinguish between occupied and unoccupied vertices. This 
means each automaton has no compass. This limitation in 
automata capabilities makes their behavior on graphs more 
complicated. In a previous publication [9], the author 
demonstrated that a collective consisting of one controlling 
automaton and four controllable automata, or pebbles, is a 
minimal collective capable of maintaining the direction of 
motion on an infinite square lattice of width 2. Such a lattice 
is an embedding of an infinite ladder graph on the integer 
plane. 

II. BASIC DEFINITIONS 

Let I  be a set of indices and  
IiiM


 be a family of sets. 

Then, by  ( )
IiiMT


, we denote the set of all partial 

transversals of this family, where a partial transversal is 

defined as containing at most one element from each iM . 

Note that the empty set is also a partial transversal. 

The path graph nP  is a tree with two vertices of degree 1

, and the other 2n −  vertices of degree 2 . The n-ladder graph 

can be defined as n2n PPL =  where × denotes the Cartesian 

product of graphs [10]. 

A labeled graph is a simple, connected, vertex-labeled 

graph ( )= ,M,E,VG , where V  is a set of vertices, E  is 

the set of edges, M  is a finite set of labels, and MV: →  

is a mapping. 
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A graph-walking automaton on labeled graph 

( )= ,M,E,VG  is a sextuple ( )= ,,s,Y,X,SA 0
, where S  

is a finite set of internal states, X  is a finite input alphabet 

consisting of letters x  of the form ( ) ( )( )vN,v   where 

( ) Mv   is the label of a vertex Vv , and ( )vN  is a set or 

multiset of labels of this vertex neighborhood,  = MY  (

M ) is a finite output alphabet where ay =  means the 

automaton moves from the current vertex to an adjacent 
vertex with label a , and =y  means the automaton stays at 

the current vertex, Ss0   is an initial state, SXS: →  is 

a transition function, and YXS: →  is an output 

function. Given a labeled graph G , the automaton begins its 

computation in the state 
0s , observing the labeling 

0x  of the 

closed neighborhood of vertex 
0v . At each step of the 

computation, when the automaton is in state s  and observing 

the labeling x  of the closed neighborhood of vertex v , it 

consults the transition tables   and   for s  and x . If 

( )x,s  is defined as s  and ( )x,s  is defined as a , the 

automaton transitions to state s  and moves to a vertex 

labeled with a . The automaton does not have a compass, 

meaning it does not distinguish directions or the relative 
positions of vertices. Consequently, it does not differentiate 
between vertices with the same labels. 

Let us denote by 0v  the vertex of the graph G  at which 

the automaton A , initially in state 0s , is set. Define 

( )G,AInt  as the set of vertices visited by the automaton. We 

say that the automaton explores G  if ( ) VG,AInt =  for any 

0v . G  is a trap for A  if the automaton fails to explore the 

graph. 

In this note, we focus on the behavior of graph-walking 
automata on graphs with equally labeled, or equivalently, 
unlabeled vertices (anonymous / homonymous setting). 
Clearly, any such graph will serve as a trap for a single 
compassless automaton, except in the trivial cases. This poses 
the problem of possibly enriching the automaton model to 
solve the exploration problem. The most natural approach is 
a system of interacting automata, referred to as a collective. 

Let  n,,2,1I = . A system of automata 

( )n21 A,,A,A =A  where ( )ii

i

0iiii ,,s,Y,X,SA = , 

ni1  , is called a collective of automata if the following 

conditions are satisfied: (1) the input alphabet iX  of the 

automaton iA  consists of letters x  of the form ( ),  where 

 k1 ,, =  ,  ( )i\Ij|ST,,, jk1   ,   describes 

the automata located on some vertex v , 1 , …, k  describe 

the automata located on vertices from the neighborhood of v

, and k  is the degree of v ; (2)  = ii DY  where 

 ( )i\Ij|STD ji = ; (3) ( ) ( )   aPra,s 2i  for any 

iSs  and iXa . Let IJ  . A subsystem ( )
JjjA


 of a 

collective ( )n21 A,,A,A =A  is called automata-pebbles (or 

pebbles) in this collective if for all Jj   the following 

conditions hold: (1) jA  has a single internal state; (2) jA  can 

only move if there is an automaton iA , Ji , on the same 

vertex, and 
jA  can only move to the same vertex as 

iA . We 

assume that the automata can distinguish between all pebbles. 

If a collective of automata ( )n21 A,,A,A =A  has k  

automata-pebbles, we will refer to it as a collective of type 

( )k,kn − . 

The (nondeterministic) behaviour of a collective 

( )n21 A,,A,A =A  of type ( )k,kn −  on the graph G  is the 

set ( )G,A  of sequences ( )G,A : ( )000 y,s,x


, …, 

( )ttt y,s,x


, ( )1t1t1t y,s,x +++


, …, where ( )n

t

1

tt x,,xx 


= , 

( ) i

i

t

i

t

i

t X,x = , ( )n

t

1

tt s,,ss 


= , i

i

t Ss  , ( )n

t

1

tt y,,yy 


= , 

i

i

t Yy  , ni1  , such that ( )i

t

i

ti

i

1t x,ss =+  and 

( )i

t

i

ti

i

t x,sy = . A single sequence ( )G,A  is referred to as 

an implementation of the behavior ( )G,A . 

We further assume that a collective A  explores a graph 
G  if A  explores G  for all implementations of its behavior 

( )G,A . Otherwise, we assume that it does not explore G . 

III. AUTOMATA EXPLORATION OF LADDER GRAPHS 

Below, we describe minimal collectives of automata that 
explore finite ladder graphs and some of their subgraphs. It is 
assumed that all automata from the collective A  are initially 
placed on the same vertex of the graph G . 

Theorem 1. The following statements are fulfilled: 

(1) A single automaton can explore the graph 2P  but 

cannot explore the graphs 3P  and 2L . 

(2) A collective consisting of one automaton and one 

pebble can explore the graphs 3P  and 2L  but cannot explore 

the graphs 4P  and 3L . 

(3) A collective consisting of one automaton and two 

pebbles can explore the graph 4P  but cannot explore the 

graphs 5P  and 3L . 

(4) A collective consisting of one automaton and three 

pebbles can explore the graph nP  for all n  and the graph 3L  

but cannot explore the graph 4L . 

(5) A collective consisting of one automaton and four 

pebbles can explore the graph nL  for all n . 

In order to address the problem of exploring infinite 
graphs, it is necessary to introduce additional pebbles to 
delineate the boundaries of the explored subgraph. In this 
context, the exploration algorithm entails a collective of 
automata moving sequentially from one boundary pebble to 
another, while simultaneously relocating these pebbles in 
opposite directions. 

Theorem 2. The following statements are fulfilled: 
(1) A collective of one automaton and five pebbles can 

explore a 2-way infinite path graph. 
(2) A collective of one automaton and six pebbles can 

explore a 2-way infinite ladder graph. 

CONCLUSION 

In this note, we have presented minimal collectives 
consisting of an automaton and a few pebbles that explore 
ladder graphs and some of their subgraphs. In future work, 
we plan to investigate the behavior of collectives of 
compassless automata on various grid graphs. Such graphs 
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are interesting from the perspective of applying the study's 
results to the navigation of autonomous mobile robots. 
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