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Anomauyia—Merta ui€ei nyoaikanii — 10¢TiANTH MOKIMBOCTI
KOJIeKTUBIB  0e3KOMNACHMX AaBTOMATIB Yy JAOCHiIAKeHHi
apadunuux rpagis. Ko:ken rpag € anHoHiMHIM, TOOTO BepIIMHU
rpaga He MalOTh ifeHTU(]IKYIOUHMX 03HAYOK, i, TAKMM YHHOM,
BCi BepIIMHM OJHOTO CTemeHsl 34AIOThCSI  aBTOMATAM
iIeHTHYHUMH. ABTOMATH He PO3Pi3HAIOTH BEPIINHH HA OCHOBI
iX KoopAMHAT 200 HAnmpsAMKY (e 03HA4Ya€, 0 ABTOMATH He
MalTh  koMmmaca). Po3riasigaloTbess  KOJIEKTMBH, 110
CKJIAJAI0THCS 3 KEPYIOU0Io ABTOMATA i JeKiIbKOX KaMiHYHUKIB,
sAKki € aBTOMaTaMH HalmpocTtimoi ¢opMu, MOTOKEHHS SIKHX
TOBHICTIO BU3HAYAIOTHCS KepPyH4uM aBTOMATOM.
IIpencraBjeno MiHiMAJIbHI KOJEKTHBH, SIKi dOCTIIKYIOTH
apadunHi rpadu Ta geski ix migrpadu.

Abstract— The objective of this note is to examine the
capabilities of collectives of compassless automata in exploring
ladder graphs. Each graph is anonymous, meaning the vertices
of the graph lack identifying labels, and thus, all vertices of the
same degree appear identical to the automata. The automata do
not distinguish between vertices based on their coordinates or
direction (which means the automata have no compass). We
considered collectives consisting of a controlling automaton and
some pebbles, which are automata of the simplest form, whose
positions are entirely determined by the controlling automaton.
We have presented minimal collectives that explore ladder
graphs and some of their subgraphs.

Kniouosi cnoea—opadbunnuii zpagh, konekmue agmomamis,
odocnioxycennn zpagha

Keywords—Iladder graph, collective of automata, graph
exploration

l. INTRODUCTION

Automata walking on graphs are a mathematical
formalization of autonomous mobile agents with limited
memory operating in discrete environments. Studies
investigating the behavior of such automata in finite and
infinite labyrinths — embedded directed graphs of a specific
form — have emerged and are rapidly evolving within this
framework [1, 2, 3]. This research has diverse applications,
including image analysis [4, 5] and mobile robotics

navigation [6]. The assumption that automata navigating
labyrinths can discern directions, i.e., possess a compass, is
fundamental to the findings concerning automata and
labyrinths [7, 8].

The aim of this note is to investigate the behavior of
collectives of compassless automata on ladder graphs. Each
automaton receives information about the presence or
absence of other automata at the neighboring vertices when
operating on the graph. Based on this input, it moves to one
of these vertices. The automata do not differentiate between
the directions or positions of the vertices, but they can
distinguish between occupied and unoccupied vertices. This
means each automaton has no compass. This limitation in
automata capabilities makes their behavior on graphs more
complicated. In a previous publication [9], the author
demonstrated that a collective consisting of one controlling
automaton and four controllable automata, or pebbles, is a
minimal collective capable of maintaining the direction of
motion on an infinite square lattice of width 2. Such a lattice
is an embedding of an infinite ladder graph on the integer
plane.

[1. BASIC DEFINITIONS
Let | be aset of indices and {M,}._, be a family of sets.
Then, by T({M,}_), we denote the set of all partial
transversals of this family, where a partial transversal is
defined as containing at most one element from each M; .
Note that the empty set is also a partial transversal.

The path graph P, is a tree with two vertices of degree 1
, and the other n—2 vertices of degree 2. The n-ladder graph
can be defined as L, =P, x P, where x denotes the Cartesian

product of graphs [10].

A labeled graph is a simple, connected, vertex-labeled
graph G=(V,E,M,u), where V is a set of vertices, E is
the set of edges, M is a finite set of labels, and p:V —>M
is a mapping.



A graph-walking automaton on labeled graph
G=(V,E,M,u) isasextuple A=(S,X.Y,s,,¢,y), where S
is a finite set of internal states, X is a finite input alphabet
consisting of letters x of the form (u(v)u(N,)) where
u(v)e M isthe label of avertex veV , and (N, ) is a set or
multiset of labels of this vertex neighborhood, Y =M L {8} (
0 M) is a finite output alphabet where y=a means the

automaton moves from the current vertex to an adjacent
vertex with label a, and y =6 means the automaton stays at

the current vertex, s, €S is an initial state, ¢:SxX — S is
a transition function, and y:SxX —Y is an output
function. Given a labeled graph G, the automaton begins its
computation in the state s,, observing the labeling x, of the
closed neighborhood of vertex v,. At each step of the
computation, when the automaton is in state s and observing
the labeling x of the closed neighborhood of vertex v, it
consults the transition tables ¢ and y for s and x. If
o(s,x) is defined as s’ and (s,x) is defined as a, the
automaton transitions to state s’ and moves to a vertex
labeled with a. The automaton does not have a compass,
meaning it does not distinguish directions or the relative
positions of vertices. Consequently, it does not differentiate
between vertices with the same labels.

Let us denote by v, the vertex of the graph G at which
the automaton A, initially in state s,, is set. Define
Int(A,G) as the set of vertices visited by the automaton. We
say that the automaton explores G if Int((A,G)=V for any
v,. G isatrap for A if the automaton fails to explore the
graph.

In this note, we focus on the behavior of graph-walking
automata on graphs with equally labeled, or equivalently,
unlabeled vertices (anonymous / homonymous setting).
Clearly, any such graph will serve as a trap for a single
compassless automaton, except in the trivial cases. This poses
the problem of possibly enriching the automaton model to

solve the exploration problem. The most natural approach is
a system of interacting automata, referred to as a collective.

Let 1={12,..n}. A system of
A=(A,A,...,A,)  where Aiz(si’xi’Yi'S(i)'(pi'Wi)’

1<i<n, is called a collective of automata if the following
conditions are satisfied: (1) the input alphabet X, of the
automaton A consists of letters x of the form (c,B) where
B={BrBi}s Brr B €T(S; 17 e1\fi}f), o describes
the automata located on some vertex v, B,, ..., B, describe
the automata located on vertices from the neighborhood of v
, and k is the degree of v; (2) Y,=D,u{p} where
D, =T({S; 1ie\i})); @) wi(s,a)ePr(a)uip} for any

seS; and aeX;. Let Jc|. A subsystem (AJ-)J_EJ of a

collective A=(A,,A,....,A, ) is called automata-pebbles (or
pebbles) in this collective if for all jeJ the following
conditions hold: (1) A; hasasingle internal state; (2) A; can

automata

only move if there is an automaton A, i¢J, on the same

vertex, and A; can only move to the same vertex as A;. We

assume that the automata can distinguish between all pebbles.
If a collective of automata A=(AA,,...,A) has k
automata-pebbles, we will refer to it as a collective of type
(n—kk).

The (nondeterministic) behaviour of a collective
A=(A A, .. ,A) of type (n—k,k) on the graph G is the
set TI(AG) of sequences w(AG): (%.5.Y5)> -

(%.5.9), (RerSonVen)s oo where % =(x1,...x"),
X =(a B)eX;, 5 =(st.s"), sieS, Yo=(yin.y7),
y;€Y;, 1<i<n, such that sle(pi(st‘,xf) and
A :\ui(st‘ xt') A single sequence ni(A,G) is referred to as

an implementation of the behavior TT(A,G).

We further assume that a collective A explores a graph
G if A explores G for all implementations of its behavior

I1(A,G). Otherwise, we assume that it does not explore G .

I1l. AUTOMATA EXPLORATION OF LADDER GRAPHS

Below, we describe minimal collectives of automata that
explore finite ladder graphs and some of their subgraphs. It is
assumed that all automata from the collective A are initially
placed on the same vertex of the graph G.

Theorem 1. The following statements are fulfilled:
(1) A single automaton can explore the graph P, but

cannot explore the graphs P, and L,.

(2) A collective consisting of one automaton and one
pebble can explore the graphs P, and L, but cannot explore

the graphs P, and L,.

(3) A collective consisting of one automaton and two
pebbles can explore the graph P, but cannot explore the

graphs P, and L,.
(4) A collective consisting of one automaton and three
pebbles can explore the graph P, for all n and the graph L,

but cannot explore the graph L, .

(5) A collective consisting of one automaton and four
pebbles can explore the graph L, forall n.

In order to address the problem of exploring infinite
graphs, it is necessary to introduce additional pebbles to
delineate the boundaries of the explored subgraph. In this
context, the exploration algorithm entails a collective of
automata moving sequentially from one boundary pebble to
another, while simultaneously relocating these pebbles in
opposite directions.

Theorem 2. The following statements are fulfilled:

(1) A collective of one automaton and five pebbles can
explore a 2-way infinite path graph.

(2) A collective of one automaton and six pebbles can
explore a 2-way infinite ladder graph.

CONCLUSION

In this note, we have presented minimal collectives
consisting of an automaton and a few pebbles that explore
ladder graphs and some of their subgraphs. In future work,
we plan to investigate the behavior of collectives of
compassless automata on various grid graphs. Such graphs
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are interesting from the perspective of applying the study's
results to the navigation of autonomous mobile robots.
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