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Anomauyis—B poGoTi BU3HAYEHO TEPCNEKTUBHMII KJac
3ropTKOBHX HEHPOHHUX MEPeX, a TAKOK PO3IJISHYTI iX KI0Y0Bi
napamMeTpu JJs  MOJAJBIION0 CTPYKTYPHO-NIApAMeTPHYHOIO
cunre3dy. IMoka3ano, mo ni Mepeki MOBHHHI BKJIIOYATH Kpim
TpaauUiiiHUX KOMIOHEHTIB (3ropTo4Hi apu, 00'eqHYyI0Yi apu,
apH NPSIMOTO TOIIMPEHHsSI, TOAATKOBi INapH: map NMakKeTHOI
HoOpMaJti3auii, 3ropTkoBuii wap 1x1, map BiaciBy, 3aJumKoBuii
0JI0K, TOINO) TaKokK i GyHKuioHaAbHI cTpyKTipHi 610KkHM (SRU,
CRU, 610k minsHoi 3aaumKkoBoi yBaru, Tomo). [Ipononyerbcest
3aCTOCYBaHHSI TEeHETHYHOT0 AaJropuTMy /sl CTPYKTYpPHO-
NMapaMeTPHYHOI0 CHHTe3Y 3 BUKOPHCTAHHAM PO3IJISAHYTHX IIapiB
Ta CTPYKTYPHHUX 0JIOKIB.

Abstract— The paper defines a promising class of
convolutional neural networks and considers their key parameters
for further structural and parametric synthesis. It is shown that
these networks should include, in addition to traditional
components (convolutional layers, pooling layers, feed-forward
layers, additional layers: batch normalization layer, 1x1
convolutional layer, dropout layer, etc), also functional structural
units (SRU, CRU, dense residual attention unit, etc). We propose
to use a genetic algorithm for structural-parametric synthesis
using the considered layers and structural blocks.
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l. INTRODUCTION

Nowadays, in modern world fully filled with image
processing tasks as well as the application of CNNs to solve
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them, the problems with lack of accuracy, low performance and
network over-complexity issues occurs. The urgency of this
problem over time is only increasing due to the proliferation of
the problem of digital identification.

Most of CNN architectures are highly restricted due to their
performance results, low learning rates and at the same time
they require a big number of high quality training materials. In
order to solve this problem and increase results the complexity
of convolutional neural networks were only increasing over the
years. But such development leads to new problems when
further CNN enrichment bumps into hardware limitations. In
such conditions hybrid CNNs takes the place. To increase
overall performance and accuracy the group of CNNs can be
combined to form hybrid convolutional neural network. In this
paper we will describe and present the research results on the
usage and topology features of hybrid convolutional neural
networks (HCCN)[3] as well as different structural blocks that
should be used for their synthesis processes. It includes
performance research of each structural blocks, analysis of
modern CNN topologies and their application using different
learning samples to solve most of the performance issues.

The main criteria of this research are to define optimal types
and structures of modern CNNSs, extract functional blocks and
apply them in the process of HCNN synthesis to achieve
suitable performance and accuracy results.

Genetic algorithms are part of evolutionary computing, a
field of artificial intelligence. They are inspired by evolution
and natural selection, where the strongest traits are passed
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CNN Features Parameters Error
Architecture
FractalNet Different pathlength interaction 38.6M CIFAR-10: 7.2
with each other without residual CIFAR-10+: 4.6
connection CIFAR-100: 28.20
DelugeNet Cross-layer information flow 20.2M CIFAR-10: 3.76
CIFAR-100: 19.02
SCConvNet Introduced the Spatial and Channel 36.2M CIFAR-10: 5.2
Reconstruction convolutional block CIFAR-10+:2.6
that could replace any default CIFAR-100: 15.11
convolutional layer to increase
overall performance
NovelConvNet Application of continuous 28.3M CIFAR-10: 3.88
symumetry approach for 3HM CIFAR-100: 21.51
architecture
Contextual CNN Uses split transform merge idea and 34M ImageNet: 2.87
contextual attention-based modules
Dense Residual Modern approach of combining the 38.2M CIFAR-10: 4.12
Attention-Based residual and dense mechanisms on CIFAR-10+: 2.31
CNN top of attention-based 3HM CIFAR-100: 14.35
architecture Multi-Crop: 2.81
ImageNet: 2.72
Competitive SE- - Identity mapping used for rescaling 36.9M CIFAR-10: 3.5
WRN [CNN the feature maps in pair with SE- CIFAR-100: 17.47
WRN layer

Fig. 1. Topology of modern CNN architectures and their relative features and parameters.

down from generation to generation. The multicriteria
genetic algorithm (MCGA) is an extension of this process. It
focuses on optimizing multiple objectives simultaneously.
Each solution provided by the algorithm is associated with a
set of objective function values. The BCGA optimizes these
values and provides a set of Pareto-optimal solutions.[2]

The advantage of the MCGA is that it explores global
solutions, not limited to local minima and maxima, including
the ability to simultaneously process numerous parameters.
When applied to neural networks, MCGA can help determine
the optimal set of weights and biases in the network. They
can also be useful in matters such as network design
decisions, such as choosing the right number of hidden layers
and nodes in each layer.

In multi-objective optimization problems, there are
several conflicting objectives that need to be optimized. This
results in a set of possible solutions, known as Pareto
solutions, where no other solution can improve all objectives
simultaneously. Therefore, the goal is not to find a single
optimal solution, but to generate a set of Pareto-optimal
solutions that provide a trade-off between the conflicting
objectives.[5, 6]

Multi-criteria genetic algorithms (MCGASs), such as
NSGA-II1, MOEA/D2, SPEA3, have shown good
performance in many engineering optimization problems.
Inspired by the evolutionary theory of "survival of the fittest,"
competitive individuals can be produced by using selection,
mutation, and crossover operators through iteration. These
individuals, which cannot outperform each other in all
respects, create a set, the so-called non-dominance front.
From

the point of view of physical optimization problems, in which
evaluations are always computationally complex, the
population size in MOGA is usually small due to limited
computing resources.

Il. TOPOLOGY ANALYSIS OF MODERN CONVOLUTIONAL
NEURAL NETWORKS

Due to fast-forward development of convolutional neural
networks the new constructive approaches are being
developed actively. Instead on further increasing of structure
complexity and depth development switched on utilizing
functional elements such as structural blocks and layers
presets. Such blocks are the paternal representation of
combinations of simple layers with special connectivity
approach and predefined core parameters with usage of
global or local functions. These blocks by itself can provide
superior improvements by applying it singly or as a
combination of several different blocks.[4]

A. Spatial and Channel Reconstruction Convolution

In modern convolutional neural networks the most
undergo bottleneck elements are 3x3 convolutional layers
that are responsible for the most of computational load. It
caused the development of different efficient convolutional
operation functions such as GWC, DWC, PWC, etc. The
latest substitution for convolution operation is SCConv[1]
that consists of special reconstruction unit and channel
reconstruction unit.

» the aim of SRU is to separate redundant features based
on weighting coefficients and reconstructs them to reduce
redundancy in the spatial dimension and improve feature
representation;
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* the aim of CRU element is to use a “divide-transform-
merge” approach to lower the redundancy in channel
dimensions and computational load.

« the structural block SCConv is combines SRU and CRU
elements and is the replacement for default convolution
operation for default CNN architectures. Utilizing the
SCConv by far reduces computational load and improves
model performance on complex problems.

B. Channel Boosting Based Convolutional Block

The CNN training performance results also relies on the
input representation and its parameters. The lack of different
qualities and lack of class-specific information within target
sample may affect resulted CNN performance. To solve this
problem, the concept of channel boosting CNN was designed.
It based on the technology of input channel dimension and by
using auxiliary learners that were introduced in CNN to boost
the representation of the network.

* increasing representational capacity of CNN by means
of rising quantity of input channels;

* inductive transfer learning is used in a novel way to
build a boosted input representation for CNN;

« increases in computational load may happen due to the
generation of auxiliary channels.

C. Multipath Based Structural Blocks

Multipath blocks are based on the approach of skipping
some layers, connections and dependencies where it’s
necessary to improve overall qualities of neural network.
Some of these shortcut connections are the following:
densely-connected block, zero padded layer, projections,
dropout, 1x1 connections, etc. The most common for
structural synthesis is densely connected block and has the
following parameters:

« introduced depth or cross-layer dimension;

« ensures maximum data flow between the layers in the
network;

* avoid relearning of redundant feature-maps;

* low and high level both features are accessible to
decision layers;

I1l. STRUCTURAL PARAMETRIC SYNTHESIS OF CONVOLUTION
NEURAL NETWORKS

Based on number of different modern CNNs that was
reviewed beforehand we can analyze and extract their unique
structural blocks and apply them for structural synthesis of
our own unique CNN architecture applying multi-criteria
genetic algorithms. Since these blocks has their own
conceptual structure and features they should be analyzed as
independent structural units as well as a different pairs of
such blocks placed together or separately within one neural
network. Then it is necessary to apply performance testing to
investigate their

internal parameters, influence on overall system performance
and accuracy shifts.

For our practical investigation we’ll test these blocks both
solo and by pairs during HCNN synthesis using genetic
algorithms. The target CNN should be very simple and
straightforward. The simplicity will diminish external
factors, randomness and allow us to clearly highlight the
internal influence caused by each of the block. All the tests
will be done using training and testing sample called
“CIFAR-100”. It contains low resolution images within the
number of classes that fits well to process them using
relatively simple system.[7]

After applying genetic algorithms to generate basic CNN
without specific blocks, the initial accuracy of such system is
86.3% and learning process lasts 5.3 hours. It will be the
initial values for further performance test comparison. Take
note that the overall learning time depends on the hardware
and only the time differences should be taken into
consideration

Input: N (population size)

N (archive size)

T (maximum number of generations)
Output: A (nondominated set)

Step |: Initialization: Generate an initial population Py and create the empty archive
(external set) Py = (). Set t = 0.

Step 2:  Fitness assignment: Calculate fitness values of individuals in P, and P,
(cf- Section 3.1).

Step 3:  Environmental selection: Copy all nondominated individuals in P, and P,
to Pyyy. If size of Py, exceeds N then reduce Py, by means of the
truncation operator, otherwise if size of Py is less than N then fill Py
with dominated individuals in P; and ﬁ, (cf- Section 3.2).

Step 4:  Termination: If t > T or another stopping criterion is satisfied then set A
to the set of decision vectors represented by the nondominated individuals in
P,y Stop.

Step 5:  Mating selection: Perform binary tournament selection with replacement on
P, in order to fill the mating pool.

Step 6:  Variation: Apply recombination and mutation operators to the mating pool
and set P, to the resulting population. Increment generation counter (t =
t + 1) and go to Step 2.

Fig. 2. Algorithmic description of SPEA-3 evolutionary algorithm.

For the structural synthesis we propose to utilize SPEA-3
evolutionary algorithm to overcome aforementioned
problems shown of Figure 2.

Based on the algorithm the basic test-driven CNN
architecture in generated using the set of preestablished
blocks. Then the performance analysis is done on the
generated result model. The main criteria for following
optimization approach are target accuracy, learning rate
(performance-based) and resulted CNN structure complexity.

By adding structural blocks to generation process in
comparison to predefined default CNN structure the result
numbers were changed as following:

» SCConv-A — accuracy 88,5%, learning process lasts
5.1h (performance boost = +3.8%);

» SCConv — accuracy 89,2%, learning process lasts 5.5h
(performance boost = -3.37%%);
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» DenRes-Att — accuracy 90,1%, learning process lasts
5.1h (performance boost = +3.77%%);

» SE-BN-Inception — accuracy 87,92%, learning process
lasts 4.92 h (performance boost = +7.17%);

» Convolutional block attention module (take note that
this block may perform better with the image samples of high
resolution) — accuracy 92,1%, learning process lasts 5.42h
(performance boost = -2.26%);

* PolyInception module — accuracy 84%, learning
process lasts 6.2h (performance boost = -16,98%);

» Non-local Block — accuracy 87,45%, learning process
lasts 5.88h (performance boost = -10.91%);

 Densely connected layer (take note that this block may
perform differently based on overall system depth) —
accuracy 89,45%, learning process lasts 5.88h (performance
boost = -10.94%);

The combination of multiple blocks applied to following
CNN structure gives us following results:

* SCConv + DenRes-Att — accuracy 94,25%, learning
process lasts 6.9h (performance boost = -30.18%);

* SCConv + SE-ResNeXt — accuracy 91,8%, learning
process lasts 6.6h (performance boost = -24.52%);

* CBAM + Non-local block — accuracy 92,4%, learning
process lasts 6.17h (performance boost = -16.41%);

* SCConv + Non-local — accuracy 91,13%, learning
process lasts 5.74h (performance boost = -8.3%);

* SCConv + Polylnception — accuracy 91%, learning
process lasts 6h (performance boost = -13.2%);

* Attention merge + CBAM — accuracy 94,4%, learning
process lasts 6.34h (performance boost = -19.6%);

When the problem of low learning process performance
takes place, there come out a humber of solutions. One of
them is to populate the architectural structure of current
system with the supportive blocks. The main ones are:

- batch normalization layer;
- 1x1 convolution layer;
- dropout layer;

- residual block.

IV. CONCLUSIONS

It is considered the problem of hybrid convolution neural
networks (HCNN) topology analysis. It is shown that it is
necessary to pay attention on some layers (blocks) possess
some useful properties, which permit to increase the problem
solution accuracy and decrease the complexity of HCNN. For
structural parametric synthesis it’s advices to use of SPEA-3
evolutionary algorithms with usage of CNN structural blocks.
As such blocks, it was proposed to consider the ones that are
listed in Table 1. Also it’s considered to use supportive
structural layers such as: batch size: 512, 1x1 convolution
layer, dropout layer, residual block. Based on the listed

blocks, test-driven CNN architectures were synthesized using
multi-criteria genetic algorithms (SPEA-3) to perform the
analysis of functional block performance parameters. The
number of specified functional blocks were tested in terms of
performance and the results are listed at Table 1. Based on
the performance analysis the optimal subset of structural
blocks and target CNN were defined and application criterias
were described.

TABJIMISA 1. RESULT PARAMETER COMPARISON TABLE OF SINGLE-USED

BLOCKS
Block type Accuracy(%) Time (H) Diff (~)
Densely
connected 0.8945 5.88 3.2
layer
SCConv
block 0.885 2.2 2.2
SCConc-A
block 0.892 2.6 2.6
SE-BN-
Inception 0.8792 4.92 18
module
Convoluti
onal block 0921 5.42 59
attention
module
DenRes-
Att 0.8781 8.81 17
module
PolyIncept
ion 0.89 8.9 2.7
module
Nan-local 89.45 7.45 31
Block ' ' '
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