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Анотація—В роботі визначено перспективний клас 

згорткових нейронних мереж, а також розглянуті їх ключові 

параметри для подальшого структурно-параметричного 

синтезу. Показано, що ці мережі повинні включати крім 

традиційних компонентів (згорточні шари, об'єднуючі шари, 

шари прямого поширення, додаткові шари: шар пакетної 

нормалізації, згортковий шар 1х1, шар відсіву, залишковий 

блок, тощо) також і функціональні структірні блоки (SRU, 

CRU, блок щільної залишкової уваги, тощо). Пропонується 

застосування генетичного алгоритму для структурно-

параметричного синтезу з використанням розглянутих шарів 

та структурних блоків.   

Abstract— The paper defines a promising class of 

convolutional neural networks and considers their key parameters 

for further structural and parametric synthesis. It is shown that 

these networks should include, in addition to traditional 

components (convolutional layers, pooling layers, feed-forward 

layers, additional layers: batch normalization layer, 1x1 

convolutional layer, dropout layer, etc), also functional structural 

units (SRU, CRU, dense residual attention unit, etc). We propose 

to use a genetic algorithm for structural-parametric synthesis 

using the considered layers and structural blocks.  
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згорткові нейронні мережі; генетичний алгоритм 
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I. INTRODUCTION 

Nowadays, in modern world fully filled with image 
processing tasks as well as the application of CNNs to solve 

them, the problems with lack of accuracy, low performance and 
network over-complexity issues occurs. The urgency of this 
problem over time is only increasing due to the proliferation of 
the problem of digital identification. 

Most of CNN architectures are highly restricted due to their 
performance results, low learning rates and at the same time 
they require a big number of high quality training materials. In 
order to solve this problem and increase results the complexity 
of convolutional neural networks were only increasing over the 
years. But such development leads to new problems when 
further CNN enrichment bumps into hardware limitations. In 
such conditions hybrid CNNs takes the place. To increase 
overall performance and accuracy the group of CNNs can be 
combined to form hybrid convolutional neural network. In this 
paper we will describe and present the research results on the 
usage and topology features of hybrid convolutional neural 
networks (HCCN)[3] as well as different structural blocks that 
should be used for their synthesis processes. It includes 
performance research of each structural blocks, analysis of 
modern CNN topologies and their application using different 
learning samples to solve most of the performance issues.  

The main criteria of this research are to define optimal types 
and structures of modern CNNs, extract functional blocks and 
apply them in the process of HCNN synthesis to achieve 
suitable performance and accuracy results. 

Genetic algorithms are part of evolutionary computing, a 
field of artificial intelligence. They are inspired by evolution 
and natural selection, where the strongest traits are passed  

 



228 

 

 

Fig. 1.  Topology of modern CNN architectures and their relative features and parameters. 

down from generation to generation. The multicriteria 
genetic algorithm (MCGA) is an extension of this process. It 
focuses on optimizing multiple objectives simultaneously. 
Each solution provided by the algorithm is associated with a 
set of objective function values. The BCGA optimizes these 
values and provides a set of Pareto-optimal solutions.[2] 

The advantage of the MCGA is that it explores global 
solutions, not limited to local minima and maxima, including 
the ability to simultaneously process numerous parameters. 
When applied to neural networks, MCGA can help determine 
the optimal set of weights and biases in the network. They 
can also be useful in matters such as network design 
decisions, such as choosing the right number of hidden layers 
and nodes in each layer. 

In multi-objective optimization problems, there are 
several conflicting objectives that need to be optimized. This 
results in a set of possible solutions, known as Pareto 
solutions, where no other solution can improve all objectives 
simultaneously. Therefore, the goal is not to find a single 
optimal solution, but to generate a set of Pareto-optimal 
solutions that provide a trade-off between the conflicting 
objectives.[5, 6] 

Multi-criteria genetic algorithms (MCGAs), such as 
NSGA-II1, MOEA/D2, SPEA3, have shown good 
performance in many engineering optimization problems. 
Inspired by the evolutionary theory of "survival of the fittest," 
competitive individuals can be produced by using selection, 
mutation, and crossover operators through iteration. These 
individuals, which cannot outperform each other in all 
respects, create a set, the so-called non-dominance front. 
From  

the point of view of physical optimization problems, in which 
evaluations are always computationally complex, the 
population size in MOGA is usually small due to limited 
computing resources. 

II. TOPOLOGY ANALYSIS OF MODERN CONVOLUTIONAL 

NEURAL NETWORKS  

Due to fast-forward development of convolutional neural 
networks the new constructive approaches are being 
developed actively. Instead on further increasing of structure 
complexity and depth development switched on utilizing 
functional elements such as structural blocks and layers 
presets. Such blocks are the paternal representation of 
combinations of simple layers with special connectivity 
approach and predefined core parameters with usage of 
global or local functions. These blocks by itself can provide 
superior improvements by applying it singly or as a 
combination of several different blocks.[4] 

A. Spatial and Channel Reconstruction Convolution 

In modern convolutional neural networks the most 
undergo bottleneck elements are 3x3 convolutional layers 
that are responsible for the most of computational load. It 
caused the development of different efficient convolutional 
operation functions such as GWC, DWC, PWC, etc. The 
latest substitution for convolution operation is SCConv[1] 
that consists of special reconstruction unit and channel 
reconstruction unit.  

• the aim of SRU is to separate redundant features based 
on weighting coefficients and reconstructs them to reduce 
redundancy in the spatial dimension and improve feature 
representation;  
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• the aim of CRU element is to use a “divide-transform-
merge” approach to lower the redundancy in channel 
dimensions and computational load.  

• the structural block SCConv is combines SRU and CRU 
elements and is the replacement for default convolution 
operation for default CNN architectures. Utilizing the 
SCConv by far reduces computational load and improves 
model performance on complex problems.   

B. Channel Boosting Based Convolutional Block 

The CNN training performance results also relies on the 
input representation and its parameters. The lack of different 
qualities and lack of class-specific information within target 
sample may affect resulted CNN performance. To solve this 
problem, the concept of channel boosting CNN was designed. 
It based on the technology of input channel dimension and by 
using auxiliary learners that were introduced in CNN to boost 
the representation of the network. 

• increasing representational capacity of CNN by means 
of rising quantity of input channels; 

• inductive transfer learning is used in a novel way to 
build a boosted input representation for CNN; 

• increases in computational load may happen due to the 
generation of auxiliary channels. 

C. Multipath Based Structural Blocks 

Multipath blocks are based on the approach of skipping 
some layers, connections and dependencies where it’s 
necessary to improve overall qualities of neural network. 
Some of these shortcut connections are the following: 
densely-connected block, zero padded layer, projections, 
dropout, 1x1 connections, etc. The most common for 
structural synthesis is densely connected block and has the 
following parameters: 

• introduced depth or cross-layer dimension; 

• ensures maximum data flow between the layers in the 
network; 

• avoid relearning of redundant feature-maps; 

 • low and high level both features are accessible to 
decision layers; 

 

III. STRUCTURAL PARAMETRIC SYNTHESIS OF CONVOLUTION 

NEURAL NETWORKS 

Based on number of different modern CNNs that was 
reviewed beforehand we can analyze and extract their unique 
structural blocks and apply them for structural synthesis of 
our own unique CNN architecture applying multi-criteria 
genetic algorithms. Since these blocks has their own 
conceptual structure and features they should be analyzed as 
independent structural units as well as a different pairs of 
such blocks placed together or separately within one neural 
network. Then it is necessary to apply performance testing to 
investigate their  

internal parameters, influence on overall system performance 
and accuracy shifts.  

For our practical investigation we’ll test these blocks both 
solo and by pairs during HCNN synthesis using genetic 
algorithms. The target CNN should be very simple and 
straightforward. The simplicity will diminish external 
factors, randomness and allow us to clearly highlight the 
internal influence caused by each of the block. All the tests 
will be done using training and testing sample called 
“CIFAR-100”. It contains low resolution images within the 
number of classes that fits well to process them using 
relatively simple system.[7]  

After applying genetic algorithms to generate basic CNN 
without specific blocks, the initial accuracy of such system is 
86.3% and learning process lasts 5.3 hours. It will be the 
initial values for further performance test comparison. Take 
note that the overall learning time depends on the hardware 
and only the time differences should be taken into 
consideration 

 

Fig. 2.  Algorithmic description of SPEA-3 evolutionary algorithm. 

For the structural synthesis we propose to utilize SPEA-3 
evolutionary algorithm to overcome aforementioned 
problems shown of Figure 2. 

Based on the algorithm the basic test-driven CNN 
architecture in generated using the set of preestablished 
blocks. Then the performance analysis is done on the 
generated result model. The main criteria for following 
optimization approach are target accuracy, learning rate 
(performance-based) and resulted CNN structure complexity. 

By adding structural blocks to generation process in 
comparison to predefined default CNN structure the result 
numbers were changed as following: 

• SCConv-A – accuracy 88,5%, learning process lasts 
5.1h (performance boost = +3.8%); 

•  SCConv – accuracy 89,2%, learning process lasts 5.5h 
(performance boost = -3.37%%); 
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•  DenRes-Att – accuracy 90,1%, learning process lasts 
5.1h (performance boost = +3.77%%); 

•  SE-BN-Inception – accuracy 87,92%, learning process 
lasts 4.92 h (performance boost = +7.17%); 

•  Convolutional block attention module (take note that 
this block may perform better with the image samples of high 
resolution) – accuracy 92,1%, learning process lasts 5.42h 
(performance boost = -2.26%); 

•  PolyInception module – accuracy 84%, learning 
process lasts 6.2h (performance boost = -16,98%); 

•  Non-local Block – accuracy 87,45%, learning process 
lasts 5.88h (performance boost = -10.91%); 

•  Densely connected layer (take note that this block may 
perform differently based on overall system depth) – 
accuracy 89,45%, learning process lasts 5.88h (performance 
boost = -10.94%); 

The combination of multiple blocks applied to following 
CNN structure gives us following results: 

•  SCConv + DenRes-Att – accuracy 94,25%, learning 
process lasts 6.9h (performance boost = -30.18%); 

•  SCConv + SE-ResNeXt – accuracy 91,8%, learning 
process lasts 6.6h (performance boost = -24.52%); 

•  CBAM + Non-local block – accuracy 92,4%, learning 
process lasts 6.17h (performance boost = -16.41%); 

•  SCConv + Non-local – accuracy 91,13%, learning 
process lasts 5.74h (performance boost = -8.3%); 

•  SCConv + PolyInception – accuracy 91%, learning 
process lasts 6h (performance boost = -13.2%); 

•  Attention merge + CBAM – accuracy 94,4%, learning 
process lasts 6.34h (performance boost = -19.6%); 

When the problem of low learning process performance 
takes place, there come out a number of solutions. One of 
them is to populate the architectural structure of current 
system with the supportive blocks. The main ones are:  

- batch normalization layer;  

- 1x1 convolution layer; 

- dropout layer; 

- residual block. 

IV. CONCLUSIONS 

It is considered the problem of hybrid convolution neural 
networks (HCNN) topology analysis. It is shown that it is 
necessary to pay attention on some layers (blocks) possess 
some useful properties, which permit to increase the problem 
solution accuracy and decrease the complexity of HCNN. For 
structural parametric synthesis it’s advices to use of SPEA-3 
evolutionary algorithms with usage of CNN structural blocks. 
As such blocks, it was proposed to consider the ones that are 
listed in Table 1. Also it’s considered to use supportive 
structural layers such as: batch size: 512, 1x1 convolution 
layer, dropout layer, residual block. Based on the listed 

blocks, test-driven CNN architectures were synthesized using 
multi-criteria genetic algorithms (SPEA-3) to perform the 
analysis of functional block performance parameters. The 
number of specified functional blocks were tested in terms of 
performance and the results are listed at Table 1. Based on 
the performance analysis the optimal subset of structural 
blocks and target CNN were defined and application criterias 
were described. 

TАБЛИЦЯ I.  RESULT PARAMETER COMPARISON TABLE OF SINGLE-USED 

BLOCKS 

Block type Accuracy(%) Time (H) Diff (~) 

Densely 

connected 

layer 

0.8945 5.88 3.2 

SCConv 

block 
0.885 2.2 2.2 

SCConc-A 

block 
0.892 2.6 2.6 

SE-BN-

Inception 

module 

0.8792 4.92 1.8 

Convoluti

onal block 

attention 

module 

0.921 5.42 5.9 

DenRes-

Att 

module 

0.8781 8.81 1.7 

PolyIncept

ion 

module 

0.89 8.9 2.7 

Non-local 

Block 
89.45 7.45 3.1 
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