
 Formalization of Deductive Rules for Syntactic-
Semantic Transformations in a System for Ontology

Construction from Textual Documents

Andrii Chornyi
dept. Information Systems and Networks

Lviv Polytechnic National University
Lviv, Ukraine

Dmytro Dosyn
dept. Information Systems and Networks

Lviv Polytechnic National University
Lviv, Ukraine

Abstract — This paper presents a novel framework for
formalizing and storing deductive rules that govern syntactic-
semantic transformations in automated ontology construction from
textual data. As unstructured text continues to dominate modern
information landscapes, converting it into structured, machine-
understandable knowledge is critical for advancing intelligent
systems. Leveraging a rule-based approach rooted in formal linguistic
and logical representations, we highlight its strengths in precision,
interpretability, and adaptability for ontology extraction. We
introduce a graph-based abstraction for representing transformation
rules and storing them in graph databases, which enables efficient
pattern matching, dynamic rule management, and introspective
analysis for continuous optimization. By conceptualizing these
transformations as ETL (Extract, Transform, Load) processes, our
method provides a clear framework for evaluating and refining rule
sets. The approach is implemented on the CROCUS platform,
integrating Stanford CoreNLP for linguistic parsing with Apache
Jena Fuseki for semantic storage. Experimental results demonstrate
the practical effectiveness of our method in enhancing the
development of intelligent agents through robust and explainable rule
formalization.

Keywords — ontology construction, deductive rules, syntactic-
semantic transformation, graph database, rule-based approach,
natural language processing, knowledge extraction, ETL process,
reflective analysis

I. INTRODUCTION

In the context of the modern information society, the
majority of knowledge is represented in electronic documents
as unstructured textual data. The effective transformation of
such data into a structured form is a critical prerequisite for the
advancement of numerous fields, including science, business,
and information technology. Natural Language Processing
(NLP) methods serve as key tools in this process, providing
means for the automated analysis, interpretation, and
extraction of meaningful information from texts. This, in turn,
lays the foundation for the development of intelligent agents
capable of autonomous learning across various subject
domains — from broad to highly specialized areas.

One of the approaches to extracting structured data from
text is the rule-based approach, which involves the use of
predefined linguistic or logical deductive rules to identify and
interpret relevant information in unstructured textual sources.

This approach is grounded in the formalization of knowledge
about linguistic constructions, patterns, and contexts that
describe target entities, their properties, or relationships.

In order to ensure the reproducibility, scalability, and
flexibility of syntactic-semantic transformation processes,
there arises a need to develop a formalized abstraction for
representing deductive rules—one that supports their efficient
storage, analysis, and execution. The analysis of rules plays a
particularly important role, as it enables clustering and
optimization of their execution based on statistics from
previous applications, thereby enhancing the overall efficiency
of the system. This approach represents a form of first-order
reflection, allowing not only for the reduction of redundancy
within the rule set, but also for the identification of usage
patterns—an essential prerequisite for the adaptive
configuration of deduction mechanisms in accordance with the
task context and the dynamics of incoming data.

II. A REVIEW OF EXISTING APPROACHES TO ONTOLOGY
CONSTRUCTION FROM TEXT

In the domain of automated ontology learning, the
deductive, or rule-based, approach relies on the use of
formalized logical rules to infer new knowledge from existing
assertions. This method offers several advantages, particularly
in contexts where accuracy, controllability, and explainability
of results are of critical importance.

Transparency and Explainability. Deductive systems
enable clear traceability of the knowledge inference process,
which is critically important in domains where trust in the
results is essential, such as medicine, law, and education. The
use of formalized rules provides a comprehensible pathway
from input data to derived conclusions [1].

Controllability and Precision. Since the rules are defined
by experts or formalized based on domain-specific knowledge,
deductive systems exhibit high precision in knowledge
inference. This is particularly important in contexts where
errors can have serious consequences, such as in decision
support systems [2].

Adaptability and Scalability. Deductive systems can be
adapted to various subject domains through the modification
or extension of the rule set. This enables efficient scaling of

60

knowledge systems without the need for complete retraining
of the model [3].

Efficiency in Combination with Graph Databases. The
integration of deductive methods with graph databases allows
for the efficient storage and processing of complex ontological
structures, providing rapid access to knowledge and enabling
its updating [4].

Capacity for Reflective Analysis. Deductive systems can
be enhanced with mechanisms that allow for the analysis and
optimization of the rules themselves based on the statistics of
their application. This opens up possibilities for automatic
clustering, detection of redundant or conflicting rules, and
their adaptation to new contexts [5].

The rule-based method for ontology construction from text
was proposed in the OntoHarvester system [6], which
introduced a novel approach to the automatic creation of
domain-specific ontologies from a small corpus of texts using
deep NLP analysis. OntoHarvester starts with a small set of
concepts (seeds) and iteratively expands the ontology by
adding new terms that have strong semantic connections with
existing concepts. According to the authors, this approach
allows for the creation of comprehensive ontologies from
small text corpora while remaining resilient to noise and
focused on a specific domain (subject area).

According to the findings of their research, the authors [6]
claim that their proposed approach achieves higher accuracy
and coverage compared to other methods, while also
demonstrating resilience to noise in the text and the ability to
create comprehensive ontologies from small text corpora. This
result is achieved, in particular, through the use of GD-rules
(Graph Domain Rules), which are templates used for
analyzing text graphs (graphs that represent grammatical
relationships between terms in the text). These rules, with a
syntax similar to SPARQL, allow for the definition of
complex patterns for searching relationships within the graphs.

According to [6], GD-rules are more powerful compared to
traditional approaches that use tree-like templates or regular
expressions. They allow for the consideration of complex
grammatical structures in the text, which significantly
improves the accuracy of extracting ontological relationships.
Furthermore, unlike statistical methods, GD-rules do not
require large volumes of data for training, making them more
practical for working with small text corpora.

A similar deductive approach, based on linguistic patterns,
is discussed in the article [7] for the extraction of factual
information. The authors present some basic correspondences
between linguistic patterns and their ontological
interpretations in canonical form.

Another practical idea and its implementation are
presented in the article [8]. The authors propose the
development of a question-answering (QA) system based on
the transformation of queries formulated in natural language
into SPARQL queries, which are used in semantic web
applications to retrieve data from graph databases. A vast
number of such resources are interconnected through the
Linked Open Data Cloud (Linked Open Data Cloud, n.d.),

providing users with direct access to thousands of RDF/RDFS
datasets via SPARQL endpoints.

The primary issue addressed in this work is the complexity
of using the SPARQL query language for non-expert users.
The proposed methodology involves transforming an
unstructured natural language question into structured
constructs that can be processed by a machine – similarly to
previous works – through a rule-based approach.

The reviewed studies clearly demonstrate the rationale for
using a graph database both as a knowledge storage
environment and as an operational medium for performing
transformations between input data – primarily derived from
text parsers – and output data, such as knowledge graphs or
ontologies. However, the question of how to store syntactic-
semantic transformation rules remains open.

The use of a graph database for storing the formal
representation of graph transformation rules is well-justified,
particularly in the context of transforming syntactic graphs –
such as parse trees or dependency graphs – into semantic
graphs, such as RDF triples or conceptual graphs. This
rationale is grounded in the following conceptual
considerations.

Graph Structure of Rules. Transformation rules inherently
possess a graph-based nature. Each rule typically consists of a
left-hand side (LHS), which defines the structure to be
identified in the syntactic graph, and a right-hand side (RHS),
which specifies the structure to be generated in the semantic
graph. Since both the input and output of a rule are graphs, it
is reasonable to represent the rules themselves as graph
structures. Graph databases are well-suited for storing such
representations [10].

Efficiency of Pattern Matching. Graph transformations
heavily rely on subgraph matching within larger graphs. Graph
databases are optimized for such pattern-matching and graph
traversal operations, making them ideal for the efficient
execution and management of transformation rules [11].

Modeling Interrelationships Between Rules. In many
systems, transformation rules are not isolated; they may
exhibit dependencies (e.g., one rule must be applied before
another), belong to specific categories, or possess hierarchical
relationships. Graph databases enable the efficient modeling
and querying of such interrelations among rules through edges
connecting the nodes that represent them [12] [13] [14].

Storage of Metadata and Semantics. Graph databases
support the attachment of properties (attributes) to nodes and
edges, which facilitates the storage of additional information
about each rule – such as its priority, application conditions, or
links to ontological concepts. This capability enhances the
management of semantic richness within the transformation
system [15].

Tracking the Evolution and Provenance of Rules. In real-
world applications, rules evolve over time. There may arise a
need for versioning, tracking changes, or recording the
moment and way they are applied. A graph database enables
the implementation of provenance tracking mechanisms by

61

storing the history of changes as part of the graph structure
[16].

III. OBJECTIVE OF THE STUDY

The objective of this study is to develop an abstraction for
representing and storing syntactic-semantic transformation
rules in a graph database, with the capability for their further
analysis. In the long term, the results of this work are intended
to serve as the foundation for implementing reflection
methods in an intelligent agent and pave the way for realizing
an effective self-learning process.

Fig. 1. Typical ETL Process Diagram.

IV. EVALUATION OF THE COMPLEXITY OF DEDUCTIVE
SYNTACTIC-SEMANTIC TRANSFORMATION RULES

To implement rule-oriented transformations, an effective
tool for storing and processing operational syntactic and
semantic data is required. Given the nature of this data, the use
of a graph database is appropriate, where elements such as
words, entities, annotations, etc., are represented as nodes of
the graph, and the relationships between them are represented
as edges. This approach allows for a more natural
representation of nonlinear relationships (e.g., dependencies
between words in different parts of a sentence or coreference
between entities).

The main operations when working with a graph are:

 Adding a node

,

where are the attributes of the node (e.g.,
token, POS tag), which can also be nodes themselves.

 Adding an edge (link)

,

where are nodes, and is the type of relationship
(e.g., syntactic dependency).

 Searching for a link

,

where is the path between , and is the weight
of the link.

The complexity of the approach using a graph is as
follows:

 Adding a node or edge:

 Searching for neighboring nodes: (average
for a well-structured graph).

 Searching for relationships between entities:
 or ,

where is the total number of nodes (vertices) in the
graph, is the average node degree:

,

where is the total number of nodes (vertices) in the
graph,

 is the total number of edges (connections) in the graph.

Thus, the overall complexity of this approach will be:

Furthermore, the graph database allows for easy
formulation, storage, and application of rules in the rule-based
approach to ontology construction from text, where a rule can
be represented as follows:

,

where , are queries (select, insert, respectively) to

the graph database, is the graph of syntactic relations,
and is the graph of semantic relations.

V. FORMALIZATION OF DEDUCTIVE RULES FOR
SYNTACTIC-SEMANTIC TRANSFORMATIONS

In general, the set of rules represents a collection
. When applying syntactic-semantic

transformations over graphs, the rules are represented as
textual data in a well-known format, such as SPARQL or
Cypher. This allows them to be easily stored, transmitted, and
applied on the fly. Each rule from the specified set takes the
form:

where represents the previously mentioned left-hand
side (LHS), and represents the right-hand side (RHS).

The presented rules indicate that the transformation stage
is blurred between and , and may be a component of
both the left-hand side (LHS) and the right-hand side (RHS).
This representation is comprehensive for mapping rules, but
insufficient for transformation rules. The latter also include a
transformation function :

.

Thus, from the perspective of Data Engineering, the rule-
based approach to ontology construction from text represents a
typical ETL (Extract, Transform, Load) process, as illustrated
in Fig. 1.

The formalization of syntactic-semantic rules in the form
of ETL processes opens new horizons in the research and

62

development of intelligent agents capable of learning from
unstructured textual documents.

The equations are an exception to the prescribed
specifications of this template. You will need to determine
whether or not your equation should be typed using either the
Times New Roman or the Symbol font (please no other font).
To create multileveled equations, it may be necessary to treat
the equation as a graphic and insert it into the text after your
paper is styled. In particular, the separation of ETL stages
enables the evaluation of each individual rule, which opens up
opportunities for analyzing their effectiveness without
increasing the complexity of the core algorithm, keeping it at
the level of .

PREFIX crocus: http://crocus.science/
DROP GRAPH <http://localhost:3330/opgraph/statrule>;
INSERT
{
//----- LOAD -----
 GRAPH <http://localhost:3330/opgraph/semgraph>
 {
 ?fulln ?firstName ?fn .
 ?fulln ?lastName ?ln .
 ?fulln ?rdfType ?rdfPerson .
 }
//----- Reflection -----
 GRAPH <http://localhost:3330/opgraph/statout>
 {
 ?fulln ?firstName ?fn .
 ?fulln ?lastName ?ln .
 ?fulln ?rdfType ?rdfPerson .
 }
 GRAPH <http://localhost:3330/opgraph/statin>
 {
 ?subject ?compound ?object .
 ?subject ?namedEntityTag ?parserTypePerson .
 ?object ?namedEntityTag ?parserTypePerson .
 }
 GRAPH <http://localhost:3330/opgraph/statrule>
 {
 ?ruleId ?ruleStart ?startTime .
 }
}
WHERE
{
 GRAPH <http://localhost:3330/opgraph/syngraph>
 {
 BIND(NOW() AS ?startTime)
//----- EXTRACT -----
 BIND(<http://nlp.stanford.edu#compound> AS ?compound)
 BIND(<http://nlp.stanford.edu#NamedEntityTagAnnotation>
 AS ?namedEntityTag)
 BIND("PERSON" AS ?parserTypePerson)

 ?subject ?compound ?o . BIND(IRI(?o) AS ?object)
 ?subject ?namedEntityTag ?parserTypePerson .
 ?object ?namedEntityTag ?parserTypePerson .

//----- TRANSFORM -----
 BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId)
 BIND(IRI(crocus:startTime) AS ?ruleStart)
 BIND(<rdf:typeof> AS ?rdfType)
 BIND("person" AS ?rdfPerson)
 BIND(IRI(CONCAT("crocus:",
REPLACE(STR(?object), ".*[/#]", ""),
 "_",
REPLACE(STR(?subject), ".*[/#]", "")))
AS ?fulln)
 BIND(<crocus:firstname> AS ?firstName)
 BIND(<crocus:lastname> AS ?lastName)
 BIND(?object AS ?fn)
 BIND(?subject AS ?ln)
 }
};
//----- Reflection -----
INSERT
{
 GRAPH <http://localhost:3330/opgraph/statrule>
 {
 ?ruleId ?ruleEnd ?endTime .
 ?ruleId ?ruleDuration ?duration .
 }
}
WHERE
{
 GRAPH <http://localhost:3330/opgraph/statrule>
 {
 ?rule ?ruleStart ?startTime .

 }
 BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId)
 FILTER(?rule = ?ruleId)
 FILTER(?ruleStart = IRI(crocus:startTime))
 BIND(IRI(crocus:endTime) AS ?ruleEnd)
 BIND(IRI(crocus:duration) AS ?ruleDuration)
 BIND(NOW() AS ?endTime)
 BIND((?endTime - ?startTime) AS ?duration)
};

From an epistemological standpoint, this approach
constitutes an implementation of first-level reflection in an
intelligent agent, which in this case is manifested in the
agent’s ability to evaluate its own activity – specifically, the
process of ontology construction from text.

To demonstrate the validity and effectiveness of this
approach, a study was conducted on a syntactic-semantic rule
with the following logic:

 if there exists a “compound” relation between two
nodes in the syntactic graph, and both the subject
and object of this relation are, in turn, connected
to the literal “PERSON” via a
NamedEntityTagAnnotation link, then a node of
type “person” should be created in the semantic
graph, with the subject of the “compound”
relation as the first name and the object as the last
name.

The implementation of this rule was carried out at the level
of the graph database using the SPARQL query provided
below. The relative simplicity of the rule made it possible to
do so without separating the ETL processes at the application
level. This implementation enabled the analysis to be
conducted without introducing technological delays required
for executing Java code. The study was conducted using the
previously developed CROCUS platform, which utilizes
Stanford CoreNLP as the text parser and Apache Jena Fuseki
as the embedded graph database server.

In the provided SPARQL code, the processes of extracting,
transforming, and loading (ETL) are highlighted through
comments, as well as the reflection blocks.

In this SPARQL script, the input and output data of the
rule are additionally recorded in the statin and statout graphs
(representing the Extract and Load stages, respectively), as
well as the execution duration of the rule in the statrule graph
(representing the Transform stage).

The study started with a text corpus of 20 sentences,
adding one sentence at a time from 1 to 20. However, this
volume of text did not cause significant changes in the rule's
execution time that were sufficient for analysis. Therefore, a
nonlinear increment was subsequently applied, doubling the
number of sentences in the text corpus at each step up to 640
sentences. To provide a better understanding of the actual
volume of the text corpus, it should be noted that 80 sentences
correspond to approximately one A4 page, formatted in Times
New Roman font size 12 with 1 cm margins on all sides.

The text data were generated using an LLM system with
the following requirements: each sentence must mention a
single person in the format of a <First Name, Last Name>
combination, with each combination being unique.

63

In the first stage of the experiment, a clear dependency was
observed between the execution time of the syntactic-semantic
transformation and, to a great extent, the number of
connections (edges) in the sample during the Extract
stage (pattern search in the syntactic graph) (TABLE I). The
correlation coefficient between these indicators is 0.98, which
significantly outweighs the correlation coefficient between
execution time and the number of edges in the syntactic graph
during the incremental increase in the text volume, when
adding extra sentences at each step.

TABLE I. THE DEPENDENCY OF RULE EXECUTION TIME ON THE NUMBER OF
EDGES IN THE SAMPLE .

Nsent Tfull EEXTRACT

1 0.022 3
2 0.027 6
3 0.021 9
4 0.020 12
5 0.029 15
6 0.028 18
7 0.038 21
8 0.031 24
9 0.041 27
10 0.028 30
11 0.029 33
12 0.042 36
13 0.038 39
14 0.031 42
15 0.039 45
16 0.042 48
17 0.047 51
18 0.048 54
19 0.037 57
20 0.043 60
40 0.049 116
80 0.059 176
160 0.078 255
320 0.100 384
640 0.133 567

0.98

 – the number of sentences in the text corpus;

 – the execution time of the rule (script) in the full
text corpus addition mode;

 – the number of connections (edges) extracted
from the syntactic graph during the Extract stage;

 – the Pearson linear correlation between and
the parameter .

This pattern indicates the presence of a caching function in
the graph database server used in the study (Apache Jena
Fuseki), as the syntactic analysis data from the previous step
were not removed during the incremental increase in the text
corpus size. Therefore, the data from the Extract stage of the
rule being studied at each step (except the first) are partially
cached.

Fig. 2

To further investigate the impact of data caching in the
graph database server on the execution time of syntactic-
semantic rules, an additional study was conducted. This study
focused on analyzing the change in execution time during
repeated rule executions. The results of this study are
presented in TABLE II. The research algorithm involved
executing the rule ten times, measuring the time after its initial
execution on the freshly loaded syntactic graph for various
text corpus sizes.

TABLE II. THE IMPACT OF CACHING ON THE REPEATED EXECUTION OF THE
SYNTACTIC-SEMANTIC RULE.

Nsent Tfull T1 T2 T3 T4 T5 T6

20 0.043 0.009 0.007 0.007 0.004 0.005 0.009

40 0.049 0.016 0.011 0.012 0.011 0.009 0.005

80 0.059 0.019 0.020 0.012 0.010 0.011 0.013

160 0.078 0.034 0.030 0.023 0.023 0.020 0.019

320 0.100 0.041 0.033 0.030 0.031 0.025 0.027

640 0.133 0.054 0.043 0.043 0.034 0.035 0.033

 - the number of sentences in the text corpus;

 - the execution time of the rule after adding the text
corpus and its initial execution;

 - the execution time of the rule during each
subsequent attempt of repetition.

As shown in TABLE II, each subsequent execution of the
rule becomes faster until a certain minimum is reached, which
further confirms the presence of a query caching function that
helps optimize rule-based methods for ontology construction
from text. For clarity, a chart illustrating the change in rule
execution time as a function of the number of repetitions is
provided on .

The results of this study clearly demonstrate that data
caching occurs during the Extract stage (Fig. 1), and each
subsequent execution of the rule is significantly faster.
Therefore, to optimize the performance of rule-based
approaches for ontology construction from text, it makes sense
to group rules based on the similarity of input data (samples
during the Extract stage). This approach greatly accelerates the

64

execution of syntactic-semantic transformations, as running
rules in groups ensure that each subsequent rule benefits from
a partially or fully cached set of input data.

This highlights the importance of formalizing rules into a
graph representation. By representing rules in a structured,
graph-based format, it becomes easier to identify patterns,
group similar rules together, and leverage caching
mechanisms more effectively. Graph representation allows for
a more efficient mapping of relationships and enables
optimization strategies like rule grouping, which can
significantly reduce execution times and improve scalability.

It is evident that data caching occurs at the Extract stage
(Fig. 1), and each subsequent execution of a rule is
significantly faster. Therefore, to optimize the performance of
rule-based approaches for ontology construction from text, it
is reasonable to group rules based on the similarity of their
input data (i.e., the samples obtained at the Extract stage). This
approach considerably accelerates the execution of syntactic-
semantic transformations, as executing rules in groups allows
each subsequent rule to operate on a partially or even fully
cached set of input data.

This underscores the importance of formalizing rules in the
form of a graph-based representation. By representing rules in
a structured, graph-oriented format, it becomes easier to
identify patterns, group similar rules, and more effectively
leverage caching mechanisms. A graph-based representation
enables more efficient modeling of interdependencies and
facilitates the implementation of optimization strategies, such
as rule grouping, which can significantly reduce execution
time and enhance scalability.

@prefix crocus: <http://crocus.science/> .
@prefix nlp: <http://nlp.stanford.edu#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix ex: <http://example.org#> .

--- EXTRACT ---
ex:subject nlp:compound ex:object .
ex:subject nlp:NamedEntityTagAnnotation "PERSON" .
ex:object nlp:NamedEntityTagAnnotation "PERSON" .

--- TRANSFORM ---
ex:subject nlp:compound ex:object .
ex:subject nlp:NamedEntityTagAnnotation "PERSON" .
ex:object nlp:NamedEntityTagAnnotation "PERSON" .

[] rdf:type crocus:GeneratedNode ;
 crocus:constructedFrom [
 crocus:part ex:object ;
 crocus:part ex:subject ;
 crocus:pattern "crocus:{object}_{subject}"
] .

--- LAOD ---
crocus:object_subject crocus:firstname ex:object .
crocus:object_subject crocus:lastname ex:subject .
crocus:object_subject rdf:type "person" .

Fig. 2. Visualization of the graph representation of the LOAD stage of the
syntactic-semantic transformation.

Having structured the syntactic-semantic rule in the form of an
ETL process (Fig. 1), the next step is to formalize each stage
as a graph-based representation. Accordingly, using the
previously examined rule, a prototype of its graph
representation was developed in RDF format.

Fig. 3. Visualization of the graph representation of the EXTRACT stage of the
syntactic-semantic transformation.

To illustrate the structure of the ETL-stage graphs
involved in the syntactic-semantic transformation of the
examined rule, visualizations were created (Fig. 4, Fig. 3, Fig.
2) using the online tool available at
https://semantechs.co.uk/turtle-editor-viewer/.

VI. CONCLUSIONS

This study introduces a formalized and scalable framework
for representing syntactic-semantic transformation rules as
graph structures within ontology construction systems. By
conceptualizing rule execution as an ETL process and
embedding it in a graph database environment, we enable
efficient rule management, reflective analysis, and dynamic
optimization. Experimental validation on the CROCUS
platform confirms the practical viability of this approach: rules

65

https://semantechs.co.uk/turtle-editor-viewer/

expressed in SPARQL can be effectively executed, monitored,
and improved in real-time. Notably, we demonstrate that
graph-based formalization not only facilitates caching and
performance optimization but also opens the door to rule
clustering and dependency modeling—critical capabilities for
adaptive, intelligent agents. These findings pave the way for
next-generation knowledge extraction systems that are both
transparent and adaptable, capable of learning from and
evolving with incoming unstructured text data. Future work
will explore extending this reflective rule framework to
support autonomous rule evolution and cross-domain
knowledge transfer in semantically rich environments.

REFERENCES

[1] K. Baclawski, M. Bennett, . G. Berg-Cross, T. Schneider, R. Sharma, M.
Underwood та A. Westerinen, «Toward Trustworthy AI Systems,»
Washington Academy of Sciences, p. 110, 2024.

[2] Z. Jin, L. Jin, Y. Luo, S. Feng, Y. Shi та K. Zheng, «Correctness
Learning: Deductive Verification Guided Learning for Human-AI
Collaboration,» (Preprint) researchgate.net, 10 Mar 2025.

[3] J. Rane, S. K. Mallick, Ö. Kaya та N. L. Rane, «Scalable and adaptive
deep learning algorithms for large-scale machine learning systems,»
Deep Science, pp. 39-92, October 2024.

[4] M. . Á. Rodríguez-García та R. Hoehndorf, «Inferring ontology graph
structures using OWL reasoning,» BMC Bioinformatics, 2018.

[5] S. Hassanpour, M. J. O’Connor та A. K. Das, «Clustering Rule Bases
Using Ontology-Based Similarity Measures,» Journal of Web
Semantics, pp. 1-8, 2014.

[6] H. Mousavi, D. Kerr, M. Iseli та C. Zaniolo, «Harvesting Domain
Specific Ontologies from Text,» в International Conference on Semantic
Computing, Newport Beach, CA, USA, 2014.

[7] A. Doroshenko, «Development of information technology for
intellectual analysis of factographic information,» Bionics of
Intelligence, т. 1 (90), pp. 116-121, 2018.

[8] N. Zlatareva та D. Amin, «Processing Natural Language Queries in
Semantic Web Applications,» в The 7th World Congress on Electrical
Engineering and Computer Systems and Science, 2021.

[9] «Linked Open Data Cloud,» [Онлайновий]. Available:
https://www.lod-cloud.net/.

[10] M. N. Roelofs та R. Vos, «Automatically inferring technology
compatibility with an ontology and graph rewriting rules,» Journal of
Engineering Design, № 32 (2), pp. 90-114, 2020.

[11] M. Fuchs, The Matching-Graph, 2023.

[12] L. C. Shimomura, «Graph Profiling with Graph Generating
Dependencies,» в CEUR Workshop Proceedings, 2022.

[13] W. Fan та C. Hu, «Big Graph Analyses: From Queries to Dependencies
and Association Rules,» Springer Nature, pp. 36-55, 2017.

[14] D. Liu, S. Kwashie, Y. Zhang, G. Zhou, M. Bewong, X. Wu, X. Guo, K.
He та Z. Feng, «An Efficient Approach for Discovering Graph Entity
Dependencies,» SSRN, 21 Sep 2023.

[15] I. Robinson, J. Webber та E. Eifrem, Graph Databases, 2nd Edition,
O'Reilly Media, Inc., 2015.

[16] H. Dibowski, «Full Traceability and Provenance for Knowledge
Graphs,» Formal Ontology in Information Systems, pp. 223-237,
December 2024.

66

	I. Introduction
	II. A Review of Existing Approaches to Ontology Construction from Text
	III. Objective of the Study
	IV. Evaluation of the Complexity of Deductive Syntactic-Semantic Transformation Rules
	V. Formalization of Deductive Rules for Syntactic-Semantic Transformations
	TABLE I. The dependency of rule execution time on the number of edges in the sample .
	TABLE II. The impact of caching on the repeated execution of the syntactic-semantic rule.

	VI. Conclusions
	References

