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Abstract  —  This  paper  presents  a  novel  framework  for 
formalizing  and  storing  deductive  rules  that  govern  syntactic-
semantic  transformations  in  automated ontology construction from 
textual  data.  As  unstructured  text  continues  to  dominate  modern 
information  landscapes,  converting  it  into  structured,  machine-
understandable  knowledge  is  critical  for  advancing  intelligent 
systems. Leveraging a rule-based approach rooted in formal linguistic 
and logical  representations,  we highlight  its  strengths in precision, 
interpretability,  and  adaptability  for  ontology  extraction.  We 
introduce a graph-based abstraction for representing transformation 
rules and storing them in graph databases,  which enables efficient 
pattern  matching,  dynamic  rule  management,  and  introspective 
analysis  for  continuous  optimization.  By  conceptualizing  these 
transformations  as  ETL (Extract,  Transform,  Load)  processes,  our 
method provides a clear framework for evaluating and refining rule 
sets.  The  approach  is  implemented  on  the  CROCUS  platform, 
integrating  Stanford  CoreNLP  for  linguistic  parsing  with  Apache 
Jena Fuseki for semantic storage. Experimental results demonstrate 
the  practical  effectiveness  of  our  method  in  enhancing  the 
development of intelligent agents through robust and explainable rule 
formalization.

Keywords — ontology construction, deductive rules,  syntactic-
semantic  transformation,  graph  database,  rule-based  approach, 
natural  language  processing,  knowledge  extraction,  ETL  process, 
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I. INTRODUCTION

In  the  context  of  the  modern  information  society,  the 
majority of knowledge is represented in electronic documents 
as unstructured textual data. The effective transformation of 
such data into a structured form is a critical prerequisite for the 
advancement of numerous fields, including science, business, 
and  information  technology.  Natural  Language  Processing 
(NLP) methods serve as key tools in this process, providing 
means  for  the  automated  analysis,  interpretation,  and 
extraction of meaningful information from texts. This, in turn, 
lays the foundation for the development of intelligent agents 
capable  of  autonomous  learning  across  various  subject 
domains — from broad to highly specialized areas.

One of the approaches to extracting structured data from 
text  is  the  rule-based  approach,  which  involves  the  use  of 
predefined linguistic or logical deductive rules to identify and 
interpret relevant information in unstructured textual sources. 

This approach is grounded in the formalization of knowledge 
about  linguistic  constructions,  patterns,  and  contexts  that 
describe target entities, their properties, or relationships.

In  order  to  ensure  the  reproducibility,  scalability,  and 
flexibility  of  syntactic-semantic  transformation  processes, 
there  arises  a  need  to  develop  a  formalized  abstraction  for 
representing deductive rules—one that supports their efficient 
storage, analysis, and execution. The analysis of rules plays a 
particularly  important  role,  as  it  enables  clustering  and 
optimization  of  their  execution  based  on  statistics  from 
previous applications, thereby enhancing the overall efficiency 
of the system. This approach represents a form of first-order 
reflection, allowing not only for the reduction of redundancy 
within  the  rule  set,  but  also  for  the  identification  of  usage 
patterns—an  essential  prerequisite  for  the  adaptive 
configuration of deduction mechanisms in accordance with the 
task context and the dynamics of incoming data.

II. A REVIEW OF EXISTING APPROACHES TO ONTOLOGY 
CONSTRUCTION FROM TEXT

In  the  domain  of  automated  ontology  learning,  the 
deductive,  or  rule-based,  approach  relies  on  the  use  of 
formalized logical rules to infer new knowledge from existing 
assertions. This method offers several advantages, particularly 
in contexts where accuracy, controllability, and explainability 
of results are of critical importance.

Transparency  and  Explainability. Deductive  systems 
enable clear traceability of the knowledge inference process, 
which  is  critically  important  in  domains  where  trust  in  the 
results is essential, such as medicine, law, and education. The 
use of  formalized rules  provides a  comprehensible  pathway 
from input data to derived conclusions [1].

Controllability and Precision. Since the rules are defined 
by experts or formalized based on domain-specific knowledge, 
deductive  systems  exhibit  high  precision  in  knowledge 
inference.  This  is  particularly  important  in  contexts  where 
errors  can  have  serious  consequences,  such  as  in  decision 
support systems [2].

Adaptability  and  Scalability. Deductive  systems  can  be 
adapted to various subject domains through the modification 
or extension of the rule set. This enables efficient scaling of 
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knowledge systems without the need for complete retraining 
of the model [3].

Efficiency  in  Combination  with  Graph  Databases. The 
integration of deductive methods with graph databases allows 
for the efficient storage and processing of complex ontological 
structures, providing rapid access to knowledge and enabling 
its updating [4].

Capacity for Reflective Analysis.  Deductive systems can 
be enhanced with mechanisms that allow for the analysis and 
optimization of the rules themselves based on the statistics of 
their  application.  This  opens  up  possibilities  for  automatic 
clustering,  detection  of  redundant  or  conflicting  rules,  and 
their adaptation to new contexts [5].

The rule-based method for ontology construction from text 
was  proposed  in  the  OntoHarvester  system  [6],  which 
introduced  a  novel  approach  to  the  automatic  creation  of 
domain-specific ontologies from a small corpus of texts using 
deep NLP analysis. OntoHarvester starts with a small set of 
concepts  (seeds)  and  iteratively  expands  the  ontology  by 
adding new terms that have strong semantic connections with 
existing  concepts.  According  to  the  authors,  this  approach 
allows  for  the  creation  of  comprehensive  ontologies  from 
small  text  corpora  while  remaining  resilient  to  noise  and 
focused on a specific domain (subject area).

According to the findings of their research, the authors [6] 
claim that their proposed approach achieves higher accuracy 
and  coverage  compared  to  other  methods,  while  also 
demonstrating resilience to noise in the text and the ability to 
create comprehensive ontologies from small text corpora. This 
result is achieved, in particular, through the use of GD-rules 
(Graph  Domain  Rules),  which  are  templates  used  for 
analyzing  text  graphs  (graphs  that  represent  grammatical 
relationships between terms in the text). These rules, with a 
syntax  similar  to  SPARQL,  allow  for  the  definition  of 
complex patterns for searching relationships within the graphs.

According to [6], GD-rules are more powerful compared to 
traditional approaches that use tree-like templates or regular 
expressions.  They  allow  for  the  consideration  of  complex 
grammatical  structures  in  the  text,  which  significantly 
improves the accuracy of extracting ontological relationships. 
Furthermore,  unlike  statistical  methods,  GD-rules  do  not 
require large volumes of data for training, making them more 
practical for working with small text corpora.

A similar deductive approach, based on linguistic patterns, 
is  discussed  in  the  article  [7] for  the  extraction  of  factual 
information. The authors present some basic correspondences 
between  linguistic  patterns  and  their  ontological 
interpretations in canonical form.

Another  practical  idea  and  its  implementation  are 
presented  in  the  article  [8].  The  authors  propose  the 
development of a question-answering (QA) system based on 
the transformation of queries formulated in natural language 
into  SPARQL  queries,  which  are  used  in  semantic  web 
applications  to  retrieve  data  from  graph  databases.  A  vast 
number  of  such  resources  are  interconnected  through  the 
Linked  Open  Data  Cloud  (Linked  Open  Data  Cloud,  n.d.), 

providing users with direct access to thousands of RDF/RDFS 
datasets via SPARQL endpoints.

The primary issue addressed in this work is the complexity 
of using the SPARQL query language for non-expert  users. 
The  proposed  methodology  involves  transforming  an 
unstructured  natural  language  question  into  structured 
constructs that can be processed by a machine – similarly to 
previous works – through a rule-based approach.

The reviewed studies clearly demonstrate the rationale for 
using  a  graph  database  both  as  a  knowledge  storage 
environment  and  as  an  operational  medium for  performing 
transformations between input data – primarily derived from 
text parsers – and output data, such as knowledge graphs or 
ontologies. However, the question of how to store syntactic-
semantic transformation rules remains open.

The  use  of  a  graph  database  for  storing  the  formal 
representation of graph transformation rules is well-justified, 
particularly in the context of transforming syntactic graphs – 
such  as  parse  trees  or  dependency  graphs  –  into  semantic 
graphs,  such  as  RDF  triples  or  conceptual  graphs.  This 
rationale  is  grounded  in  the  following  conceptual 
considerations.

Graph Structure of Rules. Transformation rules inherently 
possess a graph-based nature. Each rule typically consists of a 
left-hand  side  (LHS),  which  defines  the  structure  to  be 
identified in the syntactic graph, and a right-hand side (RHS), 
which specifies the structure to be generated in the semantic 
graph. Since both the input and output of a rule are graphs, it 
is  reasonable  to  represent  the  rules  themselves  as  graph 
structures.  Graph databases  are  well-suited  for  storing  such 
representations [10].

Efficiency  of  Pattern  Matching. Graph  transformations 
heavily rely on subgraph matching within larger graphs. Graph 
databases are optimized for such pattern-matching and graph 
traversal  operations,  making  them  ideal  for  the  efficient 
execution and management of transformation rules [11].

Modeling  Interrelationships  Between  Rules. In  many 
systems,  transformation  rules  are  not  isolated;  they  may 
exhibit  dependencies  (e.g.,  one rule  must  be applied before 
another), belong to specific categories, or possess hierarchical 
relationships.  Graph databases enable the efficient modeling 
and querying of such interrelations among rules through edges 
connecting the nodes that represent them [12] [13] [14].

Storage  of  Metadata  and  Semantics. Graph  databases 
support the attachment of properties (attributes) to nodes and 
edges, which facilitates the storage of additional information 
about each rule – such as its priority, application conditions, or 
links  to  ontological  concepts.  This  capability  enhances  the 
management  of  semantic  richness  within  the  transformation 
system [15].

Tracking the Evolution and Provenance of Rules. In real-
world applications, rules evolve over time. There may arise a 
need  for  versioning,  tracking  changes,  or  recording  the 
moment and way they are applied. A graph database enables 
the  implementation  of  provenance  tracking  mechanisms  by 
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storing the history of changes as part of the graph structure 
[16].

III. OBJECTIVE OF THE STUDY

The objective of this study is to develop an abstraction for 
representing  and  storing  syntactic-semantic  transformation 
rules in a graph database, with the capability for their further 
analysis. In the long term, the results of this work are intended 
to  serve  as  the  foundation  for  implementing  reflection 
methods in an intelligent agent and pave the way for realizing 
an effective self-learning process.

Fig. 1. Typical ETL Process Diagram.

IV. EVALUATION OF THE COMPLEXITY OF DEDUCTIVE 
SYNTACTIC-SEMANTIC TRANSFORMATION RULES

To implement  rule-oriented transformations,  an effective 
tool  for  storing  and  processing  operational  syntactic  and 
semantic data is required. Given the nature of this data, the use 
of  a  graph database is  appropriate,  where elements  such as 
words, entities, annotations, etc., are represented as nodes of 
the graph, and the relationships between them are represented 
as  edges.  This  approach  allows  for  a  more  natural 
representation  of  nonlinear  relationships  (e.g.,  dependencies 
between words in different parts of a sentence or coreference 
between entities).

The main operations when working with a graph are:

 Adding a node

,

where   are  the  attributes  of  the  node  (e.g., 
token, POS tag), which can also be nodes themselves.

 Adding an edge (link)

,

where   are nodes, and   is the type of relationship 
(e.g., syntactic dependency).

 Searching for a link

,

where  is the path between , and  is the weight 
of the link.

The  complexity  of  the  approach  using  a  graph  is  as 
follows:

 Adding a node or edge: 

 Searching for neighboring nodes:   (average 
for a well-structured graph).

 Searching  for  relationships  between  entities:  
 or , 

where   is  the  total  number  of  nodes  (vertices)  in  the 
graph,  is the average node degree:

,

where   is  the  total  number  of  nodes  (vertices)  in  the 
graph,

 is the total number of edges (connections) in the graph.

Thus, the overall complexity of this approach will be:

Furthermore,  the  graph  database  allows  for  easy 
formulation, storage, and application of rules in the rule-based 
approach to ontology construction from text, where a rule can 
be represented as follows:

,

where ,  are queries (select, insert, respectively) to 

the graph database,   is  the graph of syntactic relations, 
and  is the graph of semantic relations.

V. FORMALIZATION OF DEDUCTIVE RULES FOR 
SYNTACTIC-SEMANTIC TRANSFORMATIONS

In  general,  the  set  of  rules  represents  a  collection  
.  When  applying  syntactic-semantic 

transformations  over  graphs,  the  rules  are  represented  as 
textual  data  in  a  well-known  format,  such  as  SPARQL or 
Cypher. This allows them to be easily stored, transmitted, and 
applied on the fly. Each rule from the specified set takes the 
form:

where  represents the previously mentioned left-hand 
side (LHS), and  represents the right-hand side (RHS).

The presented rules indicate that the transformation stage 
is blurred between  and , and may be a component of 
both the left-hand side (LHS) and the right-hand side (RHS). 
This representation is comprehensive for mapping rules, but 
insufficient for transformation rules. The latter also include a 
transformation function :

.

Thus, from the perspective of Data Engineering, the rule-
based approach to ontology construction from text represents a 
typical ETL (Extract, Transform, Load) process, as illustrated 
in Fig. 1.

The formalization of syntactic-semantic rules in the form 
of  ETL  processes  opens  new  horizons  in  the  research  and 
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development  of  intelligent  agents  capable  of  learning  from 
unstructured textual documents.

The  equations  are  an  exception  to  the  prescribed 
specifications  of  this  template.  You will  need  to  determine 
whether or not your equation should be typed using either the 
Times New Roman or the Symbol font (please no other font). 
To create multileveled equations, it may be necessary to treat 
the equation as a graphic and insert it into the text after your 
paper  is  styled.  In  particular,  the  separation  of  ETL stages 
enables the evaluation of each individual rule, which opens up 
opportunities  for  analyzing  their  effectiveness  without 
increasing the complexity of the core algorithm, keeping it at 
the level of .

PREFIX crocus: http://crocus.science/
DROP GRAPH <http://localhost:3330/opgraph/statrule>;
INSERT 
{ 
//----- LOAD -----
  GRAPH <http://localhost:3330/opgraph/semgraph> 
  {
    ?fulln ?firstName ?fn . 
    ?fulln ?lastName ?ln . 
    ?fulln ?rdfType ?rdfPerson .
  }
//----- Reflection -----
  GRAPH <http://localhost:3330/opgraph/statout> 
  {
    ?fulln ?firstName ?fn . 
    ?fulln ?lastName ?ln . 
    ?fulln ?rdfType ?rdfPerson .
  }
  GRAPH <http://localhost:3330/opgraph/statin> 
  {
    ?subject ?compound       ?object .
    ?subject ?namedEntityTag ?parserTypePerson . 
    ?object  ?namedEntityTag ?parserTypePerson .
  }
  GRAPH <http://localhost:3330/opgraph/statrule>
  {
    ?ruleId ?ruleStart ?startTime .
  }
} 
WHERE
{
  GRAPH <http://localhost:3330/opgraph/syngraph> 
  { 
    BIND(NOW() AS ?startTime)
//----- EXTRACT -----
    BIND(<http://nlp.stanford.edu#compound> AS ?compound)
    BIND(<http://nlp.stanford.edu#NamedEntityTagAnnotation> 
         AS ?namedEntityTag)
    BIND("PERSON" AS ?parserTypePerson)

    ?subject ?compound       ?o .  BIND(IRI(?o) AS ?object)
    ?subject ?namedEntityTag ?parserTypePerson . 
    ?object  ?namedEntityTag ?parserTypePerson .

//----- TRANSFORM -----
    BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId)
    BIND(IRI(crocus:startTime) AS ?ruleStart)
    BIND(<rdf:typeof> AS ?rdfType)
    BIND("person" AS ?rdfPerson)
    BIND(IRI(CONCAT("crocus:",
REPLACE(STR(?object), ".*[/#]", ""),
 "_",  
REPLACE(STR(?subject), ".*[/#]", ""))) 
AS ?fulln)
    BIND(<crocus:firstname> AS ?firstName)
    BIND(<crocus:lastname> AS ?lastName)
    BIND(?object  AS ?fn)
    BIND(?subject AS ?ln)
  }
};
//----- Reflection -----
INSERT 
{ 
  GRAPH <http://localhost:3330/opgraph/statrule>
  {
    ?ruleId ?ruleEnd ?endTime .
    ?ruleId ?ruleDuration ?duration .
  }
}
WHERE
{
  GRAPH <http://localhost:3330/opgraph/statrule>
  {
    ?rule ?ruleStart ?startTime .

  }
  BIND(IRI(crocus:PersonFirstLastNameRule) AS ?ruleId)
  FILTER(?rule = ?ruleId)
  FILTER(?ruleStart = IRI(crocus:startTime))
  BIND(IRI(crocus:endTime) AS ?ruleEnd)
  BIND(IRI(crocus:duration) AS ?ruleDuration)
  BIND(NOW() AS ?endTime)
  BIND((?endTime - ?startTime) AS ?duration)
};

From  an  epistemological  standpoint,  this  approach 
constitutes  an  implementation  of  first-level  reflection  in  an 
intelligent  agent,  which  in  this  case  is  manifested  in  the 
agent’s ability to evaluate its own activity – specifically, the 
process of ontology construction from text.

To  demonstrate  the  validity  and  effectiveness  of  this 
approach, a study was conducted on a syntactic-semantic rule 
with the following logic:

 if there exists a “compound” relation between two 
nodes in the syntactic graph, and both the subject 
and object of this relation are, in turn, connected 
to  the  literal  “PERSON”  via  a 
NamedEntityTagAnnotation link, then a node of 
type “person” should be created in the semantic 
graph,  with  the  subject  of  the  “compound” 
relation as the first name and the object as the last 
name.

The implementation of this rule was carried out at the level 
of  the  graph  database  using  the  SPARQL  query  provided 
below. The relative simplicity of the rule made it possible to 
do so without separating the ETL processes at the application 
level.  This  implementation  enabled  the  analysis  to  be 
conducted without introducing technological delays required 
for executing Java code. The study was conducted using the 
previously  developed  CROCUS  platform,  which  utilizes 
Stanford CoreNLP as the text parser and Apache Jena Fuseki 
as the embedded graph database server.

In the provided SPARQL code, the processes of extracting, 
transforming,  and  loading  (ETL)  are  highlighted  through 
comments, as well as the reflection blocks.

In this SPARQL script, the input and output data of the 
rule are additionally recorded in the  statin and statout graphs 
(representing  the  Extract  and  Load  stages,  respectively),  as 
well as the execution duration of the rule in the statrule graph 
(representing the Transform stage).

The  study  started  with  a  text  corpus  of  20  sentences, 
adding one sentence at  a time from 1 to 20. However,  this 
volume of text did not cause significant changes in the rule's 
execution time that were sufficient for analysis. Therefore, a 
nonlinear increment was subsequently applied,  doubling the 
number of sentences in the text corpus at each step up to 640 
sentences.  To  provide  a  better  understanding  of  the  actual 
volume of the text corpus, it should be noted that 80 sentences 
correspond to approximately one A4 page, formatted in Times 
New Roman font size 12 with 1 cm margins on all sides.

The text data were generated using an LLM system with 
the  following  requirements:  each  sentence  must  mention  a 
single  person in  the format  of  a  <First  Name,  Last  Name> 
combination, with each combination being unique.
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In the first stage of the experiment, a clear dependency was 
observed between the execution time of the syntactic-semantic 
transformation  and,  to  a  great  extent,  the  number  of 
connections (edges) in the   sample during the Extract 
stage (pattern search in the syntactic graph) (TABLE I). The 
correlation coefficient between these indicators is 0.98, which 
significantly  outweighs  the  correlation  coefficient  between 
execution time and the number of edges in the syntactic graph 
during  the  incremental  increase  in  the  text  volume,  when 
adding extra sentences at each step.

TABLE I. THE DEPENDENCY OF RULE EXECUTION TIME ON THE NUMBER OF 
EDGES IN THE SAMPLE .

Nsent Tfull EEXTRACT

1 0.022 3
2 0.027 6
3 0.021 9
4 0.020 12
5 0.029 15
6 0.028 18
7 0.038 21
8 0.031 24
9 0.041 27
10 0.028 30
11 0.029 33
12 0.042 36
13 0.038 39
14 0.031 42
15 0.039 45
16 0.042 48
17 0.047 51
18 0.048 54
19 0.037 57
20 0.043 60
40 0.049 116
80 0.059 176
160 0.078 255
320 0.100 384
640 0.133 567

0.98

 – the number of sentences in the text corpus;

 – the execution time of the rule (script) in the full 
text corpus addition mode;

 – the number of connections (edges) extracted 
from the syntactic graph during the Extract stage;

 – the Pearson linear correlation between  and 
the parameter .

This pattern indicates the presence of a caching function in 
the  graph  database  server  used  in  the  study  (Apache  Jena 
Fuseki), as the syntactic analysis data from the previous step 
were not removed during the incremental increase in the text 
corpus size. Therefore, the data from the Extract stage of the 
rule being studied at each step (except the first) are partially 
cached.

Fig. 2 

To further  investigate  the impact  of  data  caching in  the 
graph  database  server  on  the  execution  time  of  syntactic-
semantic rules, an additional study was conducted. This study 
focused  on  analyzing  the  change  in  execution  time  during 
repeated  rule  executions.  The  results  of  this  study  are 
presented  in  TABLE  II.  The  research  algorithm  involved 
executing the rule ten times, measuring the time after its initial  
execution on the  freshly  loaded syntactic  graph for  various 
text corpus sizes.

TABLE II. THE IMPACT OF CACHING ON THE REPEATED EXECUTION OF THE 
SYNTACTIC-SEMANTIC RULE.

Nsent Tfull T1 T2 T3 T4 T5 T6

20 0.043 0.009 0.007 0.007 0.004 0.005 0.009

40 0.049 0.016 0.011 0.012 0.011 0.009 0.005

80 0.059 0.019 0.020 0.012 0.010 0.011 0.013

160 0.078 0.034 0.030 0.023 0.023 0.020 0.019

320 0.100 0.041 0.033 0.030 0.031 0.025 0.027

640 0.133 0.054 0.043 0.043 0.034 0.035 0.033

 - the number of sentences in the text corpus;

 - the execution time of the rule after adding the text 
corpus and its initial execution;

 -  the  execution  time  of  the  rule  during  each 
subsequent attempt of repetition.

As shown in TABLE II, each subsequent execution of the 
rule becomes faster until a certain minimum is reached, which 
further confirms the presence of a query caching function that 
helps optimize rule-based methods for ontology construction 
from text. For clarity, a chart illustrating the change in rule 
execution time as a function of the number of repetitions is 
provided on .

The  results  of  this  study  clearly  demonstrate  that  data 
caching  occurs  during  the  Extract  stage  (Fig.  1),  and  each 
subsequent  execution  of  the  rule  is  significantly  faster. 
Therefore,  to  optimize  the  performance  of  rule-based 
approaches for ontology construction from text, it makes sense 
to group rules based on the similarity of input data (samples 
during the Extract stage). This approach greatly accelerates the 
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execution  of  syntactic-semantic  transformations,  as  running 
rules in groups ensure that each subsequent rule benefits from 
a partially or fully cached set of input data.

This highlights the importance of formalizing rules into a 
graph  representation.  By  representing  rules  in  a  structured, 
graph-based  format,  it  becomes  easier  to  identify  patterns, 
group  similar  rules  together,  and  leverage  caching 
mechanisms more effectively. Graph representation allows for 
a  more  efficient  mapping  of  relationships  and  enables 
optimization  strategies  like  rule  grouping,  which  can 
significantly reduce execution times and improve scalability.

It is evident that data caching occurs at the Extract stage 
(Fig.  1),  and  each  subsequent  execution  of  a  rule  is 
significantly faster. Therefore, to optimize the performance of 
rule-based approaches for ontology construction from text, it 
is reasonable to group rules based on the similarity of their 
input data (i.e., the samples obtained at the Extract stage). This 
approach considerably accelerates the execution of syntactic-
semantic transformations, as executing rules in groups allows 
each subsequent rule to operate on a partially or even fully 
cached set of input data.

This underscores the importance of formalizing rules in the 
form of a graph-based representation. By representing rules in 
a  structured,  graph-oriented  format,  it  becomes  easier  to 
identify  patterns,  group  similar  rules,  and  more  effectively 
leverage caching mechanisms.  A graph-based representation 
enables  more  efficient  modeling  of  interdependencies  and 
facilitates the implementation of optimization strategies, such 
as  rule  grouping,  which  can  significantly  reduce  execution 
time and enhance scalability.

@prefix crocus: <http://crocus.science/> .
@prefix nlp:    <http://nlp.stanford.edu#> .
@prefix rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-
ns#> .
@prefix ex:     <http://example.org#> .

### --- EXTRACT ---
ex:subject nlp:compound ex:object .
ex:subject nlp:NamedEntityTagAnnotation "PERSON" .
ex:object  nlp:NamedEntityTagAnnotation "PERSON" .

### --- TRANSFORM ---
ex:subject nlp:compound ex:object .
ex:subject nlp:NamedEntityTagAnnotation "PERSON" .
ex:object  nlp:NamedEntityTagAnnotation "PERSON" .

[] rdf:type crocus:GeneratedNode ;
   crocus:constructedFrom [
       crocus:part ex:object ;
       crocus:part ex:subject ;
       crocus:pattern "crocus:{object}_{subject}"
   ] .

### --- LAOD ---
crocus:object_subject crocus:firstname ex:object .
crocus:object_subject crocus:lastname  ex:subject .
crocus:object_subject rdf:type         "person" .

Fig. 2. Visualization of the graph representation of the LOAD stage of the 
syntactic-semantic transformation.

Having structured the syntactic-semantic rule in the form of an 
ETL process (Fig. 1), the next step is to formalize each stage 
as  a  graph-based  representation.  Accordingly,  using  the 
previously  examined  rule,  a  prototype  of  its  graph 
representation was developed in RDF format.

Fig. 3. Visualization of the graph representation of the EXTRACT stage of the 
syntactic-semantic transformation.

To  illustrate  the  structure  of  the  ETL-stage  graphs 
involved  in  the  syntactic-semantic  transformation  of  the 
examined rule, visualizations were created (Fig. 4, Fig. 3, Fig.
2)  using  the  online  tool  available  at 
https://semantechs.co.uk/turtle-editor-viewer/.

VI. CONCLUSIONS

This study introduces a formalized and scalable framework 
for  representing  syntactic-semantic  transformation  rules  as 
graph  structures  within  ontology  construction  systems.  By 
conceptualizing  rule  execution  as  an  ETL  process  and 
embedding  it  in  a  graph  database  environment,  we  enable 
efficient  rule  management,  reflective  analysis,  and  dynamic 
optimization.  Experimental  validation  on  the  CROCUS 
platform confirms the practical viability of this approach: rules 
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expressed in SPARQL can be effectively executed, monitored, 
and  improved  in  real-time.  Notably,  we  demonstrate  that 
graph-based  formalization  not  only  facilitates  caching  and 
performance  optimization  but  also  opens  the  door  to  rule 
clustering and dependency modeling—critical capabilities for 
adaptive, intelligent agents. These findings pave the way for 
next-generation  knowledge  extraction  systems  that  are  both 
transparent  and  adaptable,  capable  of  learning  from  and 
evolving with incoming unstructured text  data.  Future work 
will  explore  extending  this  reflective  rule  framework  to 
support  autonomous  rule  evolution  and  cross-domain 
knowledge transfer in semantically rich environments.
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