Filling Gaps in Daily Temperature Data with a CNN-LSTM Model

Автор(и)

Ключові слова:

meteorology data, time series imputation, missing weather data, convolutional neural network, LSTM

Анотація

The challenge of missing data poses a significant difficulty in the practical use of recorded meteorological data, a concern that has become apparent in Ukraine in recent years. This paper presents a deep learning methodology for imputing consecutive missing data within weather station records. By integrating convolutional neural network and Long Short-Term Memory (LSTM) layers, both recognized as prominent techniques in weather data forecasting and imputation, this approach provides reliable results for filling gaps in daily air temperature data.

Завантаження

Опубліковано

24.05.2024

Номер

Розділ

Секція 4 Глибинний аналіз та організація даних, Big Data, системи штучного інтелекту, Smart додатки